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Abstract

Wind power has become a dominant contributor to Germany’s renewable electricity
generation, yet transparency remains limited to municipal-level aggregation due to
inaccessible individual turbine production data. This thesis develops a methodology
to approximate, visualize, and forecast wind power production at the individual
turbine level using exclusively public data sources.

Conducted within the RITS project framework, this research synthesizes meteo-
rological measurements from 32 Deutscher Wetterdienst (DWD) weather stations,
metadata from 4,796 Brandenburg wind turbines, and manufacturer power curves
through a multi-stage pipeline. The methodology applies inverse distance weighting
for spatial interpolation, power law extrapolation to hub height, and turbine-specific
power curves for production estimation. Two deep learning architectures — Bidirec-
tional LSTM and PatchTST — predict wind conditions over a 12-hour horizon, with
forecasts propagated through the estimation pipeline.

The Bidirectional LSTM achieves mean absolute errors of 0.88 m/s for wind speed
and 38.73° for wind direction, representing 38.4% and 9.5% improvements over the
baseline model - a persistence model that propagates the most recent observation for-
ward. Spatial interpolation and power production estimates are validated through rea-
sonability analysis, confirming physically plausible patterns. A web-based prototype
operationalizes the methodology, providing regional and turbine-level visualization
of current approximations and 12-hour forecasts.

This work demonstrates that turbine-level wind power transparency is achievable
without proprietary data. While limitations include the absence of empirical valida-
tion against actual measurements and idealized operational assumptions, the modular
framework establishes a foundation for public engagement with renewable energy
systems and provides a reproducible approach adaptable to other regions.
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Chapter 1

Introduction

The transition toward renewable energy sources is accelerating globally, position-
ing them as a critical pillar of modern energy systems. In Germany, renewables
accounted for 54.4% of electricity generation in 2024, reflecting a 3 percentage
point increase from the previous year. This translates to an absolute output of 284
billion kWh from renewable sources. Among these, wind energy has emerged as the
dominant contributor, generating 138.9 billion kWh and representing 48.9% of all
renewable electricity production. The sector’s continued growth is evidenced by the
installation of 3,337 MW of new wind capacity during 2024. Moreover, approvals
for an additional 15,000 MW of wind capacity signal a substantial acceleration in
deployment for the coming years [44].

Despite this rapid expansion, the renewable energy transition remains largely abstract
and challenging for the general public to comprehend. Existing initiatives such as
E.ON’s Energy Monitor offer valuable insights into how renewable sources contribute
to local electricity supply, yet it presents data aggregated at the municipal level [19],
precluding granular analysis of individual solar or wind installations. Additionally,
the accuracy of such systems is limited by their reliance on standardized profiles to
estimate production and consumption patterns within municipalities. Consequently,
these monitoring tools depend on real-world measurement data from municipal
energy systems to provide their data [27].

A comprehensive literature review conducted during this research revealed no ex-
isting framework or model capable of accurately approximating wind turbine pro-
duction across arbitrary geographical locations. The absence of a standardized
methodology poses considerable obstacles for reliable energy output forecasting
under diverse meteorological and operational conditions throughout Germany. Com-
pounding these challenges is the ownership structure of wind turbines, which are
predominantly held by private entities and individuals [49]. This fragmented owner-
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ship landscape prevents standardized data access protocols, thereby hindering efforts
to compile comprehensive production datasets.

The inherent variability of renewable energy generation, predominantly influenced
by meteorological conditions, introduces substantial fluctuations in electricity supply
[15]. As renewable penetration increases, grid operators face "increased grid opera-
tion complexity" [37], thereby underscoring the critical need for robust forecasting
capabilities in renewable energy production.

1.1 Resilient Infrastructure Technology Suite

The Resilient Infrastructure Technology Suite (RITS) represents an ILB-funded
research initiative at XU Exponential University dedicated to developing a compre-
hensive process model and technology suite that facilitates Brandenburg’s transition
toward resilient infrastructure systems. With a focus on energy, water, and food
infrastructure (EWF systems), RITS endeavors to establish flexible and sustainable
systems capable of absorbing environmental and systemic disruptions. The initia-
tive convenes a multistakeholder network comprising startups, research institutions,
infrastructure operators, businesses, and public administration to develop a digi-
tal, data-driven platform featuring a "digital twin" of Brandenburg’s infrastructure
landscape. Employing advanced technologies such as artificial intelligence and
blockchain, RITS creates interoperable solutions, cultivates resilient infrastructure
networks, and facilitates stakeholder collaboration toward building a decentralized
ecosystem for sustained resilience [53].

This thesis is conducted within the framework of the RITS project and aims to
develop a methodology that integrates seamlessly with the broader RITS initiative.
Consequently, the geographical scope of this research is confined to the federal state
of Brandenburg.

1.2 Research Question and Thesis Structure

The central research question guiding this thesis is: How can the current energy
production of wind turbines in Brandenburg be approximated, visualized, and short-
term forecasted using public data down to the level of individual turbines?

To address this question, the thesis proceeds as follows. Chapter 2 introduces fun-
damental concepts of wind energy, spatial interpolation techniques, and time series
forecasting methods. Chapter 3 surveys existing research on wind power forecasting
and spatial extrapolation methodologies. Chapter 4 outlines the research design,
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characterizing the study as both conceptual and quantitative with dual objectives:
approximating current turbine production and enabling short-term wind forecasting.
Chapter 5 describes the three primary data sources: meteorological measurements
from 32 Deutscher Wetterdienst (DWD) weather stations, metadata from 4,796 active
wind turbines registered in the Marktstammdatenregister (MaStR), and manufacturer-
specific power curves. Chapter 6 presents the technical methodology, encompassing
three forecasting approaches for wind conditions: a persistence baseline model and
two deep learning architectures (Bidirectional LSTM and PatchTST). Subsequently,
the chapter details the spatial interpolation of wind measurements to turbine locations
using Inverse Distance Weighting (IDW), vertical extrapolation to hub height via the
power law method, and the translation of wind speeds into electrical power output
through turbine-specific power curves. Chapter 7 evaluates model performance and
discusses the reasonability of production estimates. Chapter 8 details the web-based
prototype comprising a FastAPI backend and Next.js frontend. Chapter 9 interprets
the results presented in Chapter 7, identifies key limitations of the proposed method-
ology, discusses practical implications for wind energy forecasting, and outlines
directions for future research. Finally, Chapter 10 consolidates the research findings
and reinforces the central contribution: demonstrating that individual wind turbine
production can be approximated using exclusively public data sources.





Chapter 2

Theoretical Background

2.1 Wind Energy Fundamentals

2.1.1 Wind Energy and Wind Turbines

Wind energy constitutes a fundamental pillar of the global renewable energy transi-
tion. As defined by the U.S. Department of Energy, wind power harnesses the kinetic
energy of moving air to generate electricity through wind turbines, which convert
the rotational motion of turbine blades into electrical energy [46].

The operational principle of a wind turbine relies on aerodynamic forces acting
upon the rotor blades. When air flows across the blade surfaces, it generates both
lift and drag forces, with lift being the dominant component that induces rotational
motion. This rotation is subsequently transmitted to a generator — either directly or
through a mechanical gearbox — where the mechanical energy is transformed into
electrical power. Wind turbines can be deployed in various configurations depending
on site characteristics and energy requirements. Large-scale installations are typically
organized as wind farms that feed power directly into the electrical grid, whereas
smaller distributed turbines serve localized applications such as individual residences,
agricultural facilities, or remote off-grid locations. Furthermore, installations can
be categorized by their placement as land-based, offshore, or distributed systems
positioned near the point of consumption [45].

2.1.2 Power Curves

A wind power curve is a graphical representation that illustrates the relationship
between wind speed and electrical power output of a wind turbine. This curve
serves as an essential tool for estimating the energy generation potential of a turbine
at a given site. The power curve exhibits a characteristic shape defined by three
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critical wind speed thresholds that govern turbine operation. The first threshold is
the cut-in speed, typically ranging from 3 to 4 m/s, at which the turbine initiates
power generation. As wind speed increases beyond the cut-in point, power output
rises progressively until reaching the rated power, generally achieved at wind speeds
between 12 and 17 m/s. Once the rated power is attained, control mechanisms —
predominantly blade pitch adjustment — regulate the output to maintain a constant
power level despite further increases in wind speed. Finally, at the cut-out speed of
approximately 25 m/s, the turbine is shut down as a protective measure to prevent
structural damage from excessive wind forces [5].

2.1.3 Generic Power Curves and Wind Speed Distribution

In situations where manufacturer-specific power curves are not available, generic
power curves can be constructed through statistical analysis of wind speed data.
The Weibull distribution has emerged as the standard probabilistic model for char-
acterizing wind speed distributions, providing a crucial foundation for analyzing
and modeling generic wind turbine power curves. The Weibull probability density
function is mathematically expressed as:

f (v) =
k
A

( v
A

)k→1
exp

[
→
( v

A

)k
]

where v denotes the wind speed, A represents the scale parameter, which is pro-
portional to the mean wind speed, and k denotes the shape parameter. The shape
parameter k characterizes the variability of wind conditions at a given location.
Values of k approaching 1 indicate highly variable wind regimes with significant
speed fluctuations, whereas larger values of k — typically up to approximately 3 —
correspond to more stable and consistent wind conditions [41].

2.1.4 Wake Effects

In operational wind farms, turbine energy production is significantly influenced by
aerodynamic interactions between individual machines. When a wind turbine extracts
energy from the flowing air, it generates a wake region downstream characterized by
reduced wind speeds and increased turbulence. Under certain conditions, this wake
effect can theoretically decrease wind speeds for downstream turbines by up to 30%.
However, modern wind farm layouts account for wake effects during the planning
phase through strategic turbine placement, typically limiting actual production losses
to approximately 10% in real-world installations. The magnitude of wake effects is
determined by several factors, including inter-turbine spacing, wind direction, and
wind speed [20].
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2.1.5 Wind Vector Components

The rigorous mathematical analysis of wind direction necessitates its decomposition
into Cartesian vector components. In meteorological practice, horizontal wind
velocity is represented through two orthogonal components: the zonal component u,
oriented in the east-west direction, and the meridional component v, oriented in the
north-south direction. Given a wind speed ui and a meteorological wind direction !i

expressed in degrees — defined according to the meteorological convention as the
direction from which the wind originates — the Cartesian components are derived
through conversion to radians and application of a sign convention that transforms
the source direction into the direction of flow:

u =→ui ↑ sin
(

2∀ !i

360

)
, v =→ui ↑ cos

(
2∀ !i

360

)
.

The negative signs in these expressions accommodate the meteorological conven-
tion. While !i specifies the source direction of the wind, the vector components
must represent the direction toward which the air mass moves. Consequently, the
transformation incorporates negation to ensure alignment with standard vector orien-
tation conventions. An important characteristic of this decomposition is that each
directional vector is implicitly weighted by its magnitude [22]. Conversely, the
wind speed magnitude can be recovered from the components using the relationship
ui =

↓
u2 + v2 [18].

Fig. 2.1 Visualization of u and v components
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2.2 Spatial Interpolation and Extrapolation

2.2.1 Spatial Interpolation

The estimation of values at unmeasured locations from sparse observations neces-
sitates the application of interpolation techniques. In its most general definition,
interpolation refers to the addition of a calculated value into a series based on the
values preceding and following it [3]. When applied to geographical contexts, spatial
interpolation constitutes the process of utilizing data points with known values to
estimate values at locations where direct measurements are unavailable [38].

This methodology is widely employed to generate continuous surfaces — such as
maps of precipitation, elevation, or population density — from a limited number of
discrete measurement points. The necessity for such techniques arises when practical
constraints, including financial limitations, site accessibility, or logistical challenges,
preclude comprehensive data collection across all locations of interest. Through the
application of interpolation methods, discrete point observations can be transformed
into continuous raster surfaces, thereby enabling comprehensive spatial analysis and
modeling across an entire study area [38].

2.2.2 Inverse Distance Weighting

Among the various spatial interpolation methods available, Inverse Distance Weight-
ing (IDW) represents a deterministic approach for estimating unknown values at
unsampled locations based on the values observed at nearby measurement points.
The method employs a distance-based weighting scheme in which the estimated
value ẑ(x) at location x is calculated as a weighted mean of measured values:

ẑ(x) = !n
i=1 wizi

!n
i=1 wi

where wi = |x→ xi|→# represents the weights, which vary inversely with the distance
between the prediction location and the measurement points [23].

The fundamental assumption underlying IDW is the principle of spatial autocorrela-
tion: locations that are closer in space tend to exhibit more similar values than those
that are farther apart. As a consequence of this assumption, nearby observations
exert a proportionally stronger influence on the predicted value than more distant
observations [23].

The weighting behavior of the interpolation is governed by the power parameter
# ↔ 0, typically set to 1 or 2, which controls the rate at which the influence of
an observation decreases with distance. When # = 1, corresponding to inverse
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distance weighting, the influence decays gradually, resulting in smoother interpolated
surfaces. When # = 2, corresponding to inverse squared distance weighting, the
influence diminishes more rapidly, thereby producing greater emphasis on proximate
observations. Higher values of # accentuate local effects, which is particularly
advantageous for variables exhibiting strong spatial variability, such as precipitation
or temperature [23].

Practical implementation of IDW necessitates decisions regarding the number of
neighboring points n to include in the calculation, which determines whether local or
global weighting is applied. The optimal values of n and # are typically determined
through cross-validation procedures. A special case occurs when the target location
coincides exactly with an observation point; in this instance, the measured value is
returned directly to circumvent numerical instability arising from infinite weights
[23].

Despite its widespread adoption, IDW exhibits inherent limitations that warrant
consideration. The quality of interpolation may deteriorate when the spatial distribu-
tion of observation points is irregular, thereby introducing increased uncertainty in
sparsely sampled regions. Furthermore, the method imposes a constraint whereby
minimum and maximum values can only occur at observation points rather than in
the interpolated space between them, meaning that interpolated fields are bounded
by the range of measured values [38].

2.2.3 Vertical Extrapolation

Whereas interpolation estimates values within the spatial domain bounded by ob-
servations, extrapolation extends predictions beyond the range of measured data.
In its broadest sense, extrapolation constitutes the process of utilizing existing in-
formation to infer or predict outcomes in domains where direct observations are
absent [2]. Within the context of wind energy applications, vertical extrapolation
refers to the technique employed to estimate wind speeds at turbine hub heights from
near-surface wind measurements, thereby facilitating accurate assessment of wind
energy resources when direct measurements at operational heights are unavailable
[35].

2.2.4 Power Law for Vertical Wind Speed Extrapolation

The power law constitutes an empirical method extensively employed to estimate
wind speeds at varying elevations, particularly within wind energy applications
where measurements are typically obtained only at lower heights. This approach
enables the extrapolation of wind speed from a known reference elevation to the hub
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height of a wind turbine, thereby facilitating both energy potential assessment and
strategic siting decisions [51].

The vertical wind speed profile is mathematically expressed through a power-law
relationship between two heights:

u2 = u1

(
z2

z1

)∃

where u1 and u2 denote wind speeds at heights z1 and z2, respectively, and ∃
represents the wind shear exponent, which characterizes the rate at which wind
speed varies with elevation. In cases where measurements at two distinct heights are
available, the shear exponent can be empirically determined through the following
relationship [51]:

∃ =
ln(u2/u1)

ln(z2/z1)

Within practical wind energy studies, the power law is frequently preferred due to its
computational simplicity and acceptable accuracy in situations where comprehensive
data or detailed thermodynamic information are unavailable. However, it is impor-
tant to recognize that the exponent ∃ is not a universal constant but rather varies
as a function of surface roughness, atmospheric stability, and terrain complexity.
Atmospheric conditions exert a particularly strong influence on vertical wind shear
behavior. Under stable atmospheric conditions — characterized by weak vertical
mixing and cool surface temperatures — the shear exponent tends to assume larger
values, thereby indicating more pronounced wind shear. Conversely, unstable atmo-
spheric conditions — featuring strong vertical mixing and convective turbulence —
produce smaller values of ∃ , which correspond to more uniform vertical wind speed
profiles [51].

2.3 Time Series Forecasting

2.3.1 Machine Learning Fundamentals

The forecasting methodology employed in this research leverages machine learning
techniques to predict future wind conditions based on historical observations. At its
core, machine learning represents the capacity of computational systems to process
and evaluate data beyond explicitly programmed algorithms through contextualized
inference [14]. More comprehensively defined, Machine Learning (ML) constitutes a
subfield of Artificial Intelligence (AI) that enables computational systems to emulate
human learning processes. ML systems operate by autonomously executing tasks
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and iteratively enhancing their performance through learning from data and prior
experiences, without requiring explicit programming for each specific scenario [24].

A machine learning system comprises three fundamental components. First, a
decision process whereby an algorithm generates predictions or classifications based
on input data, which may be either labeled or unlabeled. Second, a loss or error
function that quantifies the accuracy of predictions by comparing them against
known outcomes. Third, an optimization process through which model parameters —
commonly referred to as weights — are iteratively adjusted to minimize prediction
errors and enhance overall performance [24].

Machine learning facilitates the discovery of complex patterns within large-scale
datasets, often requiring minimal manual intervention, thereby enhancing efficiency
and enabling personalization across numerous application domains. However, the
effectiveness of ML models is fundamentally dependent on the availability of
large, high-quality datasets. Poor quality or biased input data can substantially
degrade model performance, a phenomenon commonly characterized by the prin-
ciple "garbage in, garbage out." Furthermore, models are susceptible to various
challenges including instability, overfitting, and latent biases if not subjected to
rigorous validation procedures [24].

2.3.2 Time Series Forecasting Concepts

A time series is defined as a sequence of observations recorded at regular temporal
intervals, where the chronological ordering of data points is essential to the analysis.
Time series forecasting is concerned with predicting future values based on histor-
ical observations. However, unlike other predictive modeling approaches such as
regression, time series forecasting employs past values of the same variable as inputs
to predict its future states, thereby rendering time itself an intrinsic predictor [28].

Time series data typically comprise several key components. These include trend,
representing the long-term directional movement of the series; seasonality, character-
ized by repeating short-term cycles such as daily, monthly, or yearly patterns; cyclic
behavior, manifested as irregular long-term fluctuations exemplified by economic
cycles; and noise, representing random and unpredictable variation. A fundamen-
tal characteristic distinguishing time series data from other data types is temporal
dependency. Time series analysis operates under the assumption of temporal depen-
dency between successive data points, meaning that adjacent observations exhibit
correlation — a property formally known as autocorrelation [28].
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2.3.3 Forecast Evaluation Metrics

The rigorous assessment of forecasting model performance necessitates the applica-
tion of quantitative error metrics. This research employs two standard metrics for
evaluation: Mean Absolute Error and Root Mean Squared Error.

Mean Absolute Error (MAE) is a statistical metric that measures the accuracy of
predictive models by quantifying the average magnitude of prediction errors. This
metric calculates the mean of the absolute differences between predicted and actual
values, thereby disregarding the directional sign of individual errors. The MAE is
mathematically expressed as

MAE =
1
n

n

!
i=1

|yi → ŷi|

where n represents the number of observations, yi denotes the actual values, and ŷi

represents the predicted values. The resulting metric represents the average absolute
deviation of predictions from the true values and is expressed in the same units as
the target variable, facilitating direct interpretation [6].

Root Mean Squared Error (RMSE) constitutes a widely employed evaluation metric
in regression analysis that quantifies the typical magnitude of prediction errors. This
metric expresses the extent to which predicted values deviate, on average, from the
actual observed values. RMSE is mathematically defined as

RMSE =

√
1
n

n

!
i=1

(yi → ŷi)2

where yi represents the actual value, ŷi denotes the predicted value, and n indicates
the number of observations. The squaring of errors prior to averaging assigns dispro-
portionately higher penalties to large deviations, thereby making RMSE particularly
appropriate when substantial prediction errors are considered especially problematic.
Like MAE, RMSE quantifies prediction accuracy in the same units as the response
variable, rendering it intuitive and directly comparable to the practical context of
the predictions. RMSE is computed as the square root of the Mean Squared Error
(MSE).

While MSE is extensively employed as a loss function during model training through
optimization algorithms such as gradient descent, RMSE is predominantly utilized
in post-training evaluation to report model performance in interpretable units [7].
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2.3.4 Baseline Models and Model Comparison

The rigorous evaluation of sophisticated forecasting algorithms necessitates compari-
son against simpler reference approaches to establish their relative merit. A baseline
model is defined as an intentionally simple predictive model employed to establish
a minimum performance threshold against which more complex approaches can
be assessed. Such models serve as benchmarks for determining whether advanced
algorithms deliver meaningful performance improvements that justify their increased
computational and conceptual complexity. By establishing a performance floor that
sophisticated models must exceed, baseline models play a crucial role in prevent-
ing unnecessary algorithmic complexity. They provide a clear reference point for
assessing whether additional model sophistication yields commensurate benefits in
predictive accuracy [25].

Several categories of baseline models are commonly employed in forecasting appli-
cations. Random baselines generate predictions through stochastic processes and are
particularly useful when no prior information about the prediction task is available.
Majority class baselines consistently predict the most frequently occurring class and
are especially relevant for classification tasks involving imbalanced datasets. Simple
heuristic baselines employ elementary domain-specific rules, such as classifying text
sentiment based on the ratio of positive to negative words [25].

2.3.5 Persistence Model for Weather Forecasting

The persistence model constitutes a straightforward baseline approach that assumes
future values will remain constant at the most recently observed value. Mathemati-
cally, this is expressed as

P(t +d) = P(t),

where d ↗ {1,2, . . . ,12} represents the forecast timestep and P(t) denotes the value
at the last known time t. This model demonstrates strong performance in very-short-
term forecasting scenarios. However, its predictive accuracy degrades progressively
as the forecast horizon extends [50]. The rationale for employing persistence as
a baseline model derives from the inherent autocorrelation characteristic of atmo-
spheric variables. Since meteorological conditions in the near future tend to closely
resemble current conditions, simple extrapolation provides a non-trivial reference
point against which more sophisticated forecasting methods can be evaluated.
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2.3.6 Long Short-Term Memory Model

Long Short-Term Memory (LSTM) networks constitute a specialized architecture
designed to address the limitations of traditional recurrent neural networks in learn-
ing temporal patterns across extended sequences. Introduced by Hochreiter and
Schmidhuber in 1997, LSTMs represent a particular variant of Recurrent Neural
Networks (RNNs) specifically engineered to learn and retain information over long
sequential dependencies. Unlike conventional feedforward neural networks that
process each input independently, LSTMs maintain an internal memory of previous
information through recurrent connections that link past outputs to subsequent inputs.
This architectural feature enables the network to make predictions that depend on
contextual information from earlier positions in the sequence [33].

The fundamental concept underlying LSTM architecture is the cell state, denoted as
Ct , which functions analogously to a conveyor belt traversing the entire sequence and
facilitating information flow with minimal transformation. The principal advantage
of LSTMs over standard RNNs lies in their capacity to mitigate the long-term
dependency problem — the inherent difficulty that conventional RNNs encounter
when attempting to retain information from distant time steps as the temporal gap
between relevant inputs increases [33].

The propagation of information through the cell state is regulated by a system of
gating mechanisms that control the information flow by determining which informa-
tion to retain, which to discard, and what new information to incorporate. The forget
gate determines which components of the previous cell state should be discarded,
while the input gate, in conjunction with candidate values, determines what new
information should be stored in the cell state. The cell state is subsequently updated
by combining the filtered previous state with the new candidate information. Finally,
the output gate regulates which portion of the cell state is exposed in the output.
These coordinated mechanisms enable LSTMs to preserve relevant information
over extended periods, discard irrelevant data, and selectively update their internal
memory, thereby rendering them particularly effective for sequential tasks such as
language modeling, machine translation, and speech recognition [33].

2.3.7 Bidirectional LSTM Model

Bidirectional Long Short-Term Memory (BiLSTM) networks represent an architec-
tural extension of conventional LSTM networks that processes sequential data in
both forward and backward temporal directions. The architecture comprises two
distinct LSTM layers operating in parallel: a forward layer that traverses the input
sequence from the initial to the final time step, and a backward layer that processes
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the sequence in reverse chronological order. This bidirectional processing paradigm
enables the network to capture contextual information from both preceding and
succeeding time steps, rendering it particularly advantageous for tasks requiring
comprehensive sequence context, such as sentiment analysis [21].

The final output representation at each time step t is obtained by combining the
outputs from both directional layers according to the formula

pt = p f
t + pb

t

where pt denotes the final output vector, p f
t represents the forward LSTM output, and

pb
t represents the backward LSTM output. Through this integration of bidirectional

representations, BiLSTMs generate enriched contextual embeddings that provide
more comprehensive information for subsequent processing layers or classification
modules [21].

2.3.8 PatchTST Model

PatchTST (Patch Time Series Transformer) constitutes a Transformer-based architec-
ture specifically developed for multivariate time series forecasting and self-supervised
representation learning [32].

The architecture is founded upon two fundamental design principles. First, the
patching mechanism segments time series data into subseries-level patches, thereby
generating tokens that preserve local semantic information within each patch. Sec-
ond, the channel-independence principle processes each variable (channel) of the
multivariate series independently through a shared Transformer backbone, facilitat-
ing parameter sharing across series while preventing undesirable channel mixing
[32].

The patching mechanism confers significant computational advantages through token
count reduction. Specifically, this mechanism reduces the number of input tokens
from L to approximately L

S , where L denotes the look-back window length and S
represents the stride length. This reduction consequently decreases the quadratic time
and memory complexity of the self-attention mechanism from O(N2) to O

((L
S
)2
)

.
The patching approach thereby enables the model to capture local temporal patterns,
substantially reduce computational requirements, and leverage longer historical
contexts for improved forecasting accuracy [32].
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Within the channel-independent configuration, each univariate time series x(i) =
(x(i)1 , . . . ,x(i)L ) generates its corresponding prediction

x̂(i) = (x̂(i)L+1, . . . , x̂
(i)
L+T )

The overall loss function is computed as the mean squared error averaged across all
M channels:

L =
1
M

M

!
i=1

↘x̂(i)L+1:L+T → x(i)L+1:L+T↘
2
2

To enhance training stability, the model employs instance normalization, which
normalizes each time series to zero mean and unit variance, thereby mitigating
distributional discrepancies between training and test data [32].

PatchTST additionally supports self-supervised learning through a patch-level mask-
ing strategy, wherein randomly selected portions of the input are masked and the
model is trained to reconstruct the masked content, thereby encouraging the acquisi-
tion of abstract and transferable representations. Empirical evaluations demonstrate
that PatchTST achieves state-of-the-art performance in forecasting tasks and ex-
hibits strong capabilities in transfer learning and representation learning scenarios,
thereby confirming the efficacy of Transformer architectures for long-term time
series forecasting applications [32].



Chapter 3

Related Work

This chapter examines the body of research pertinent to the two central aims of
this thesis: the forecasting of wind conditions at meteorological stations and the
approximation of turbine-level power production via spatial inter- and extrapolation.

3.1 Machine Learning for Wind Forecasting

Machine learning applications in short-term wind forecasting have undergone sub-
stantial development over the past decades. In a systematic review encompassing
23 studies from 1983 to 2023, [1] examine wind nowcasting methodologies across
prediction horizons spanning one minute to one week. The analysis reveals that neu-
ral network architectures, especially contemporary deep learning models including
LSTM, Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM),
Graph Neural Network (GNN), Temporal Convolutional Network (TCN), and ensem-
ble configurations, systematically surpass traditional statistical methods in predicting
short-term wind speed and direction. Mean performance across the reviewed studies
yields MAE of 0.56 m/s, MSE of 1.10 m/s, and MAPE of 6.72%. For high-resolution
forecasts employing 1- to 10-minute intervals, errors decrease markedly, with the
most effective ensemble approach achieving MAE of 0.02 m/s and MAPE of 0.57%
at one-minute lead times. A key finding relevant to this thesis is that incorporating
additional meteorological variables beyond wind-specific features provides no sys-
tematic accuracy gains, whereas finer temporal resolution and sophisticated deep
learning architectures consistently improve forecast performance. The review fur-
ther notes that joint prediction of wind speed and direction remains underexplored,
and the absence of standardized evaluation metrics hinders meaningful cross-study
comparison.
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Building on this foundation, [50] investigate deep learning approaches with spe-
cific focus on hybrid model architectures. Such hybrid frameworks commonly
integrate signal decomposition or denoising methods — including Empirical Mode
Decomposition (EMD)/Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN), Variational Mode Decomposition (VMD), and Dis-
crete Wavelet Transform (DWT)/Wavelet Packet Decomposition (WPD) — with
feature selection mechanisms and deep learning predictors such as LSTM, Gated
Recurrent Unit (GRU), Convolutional Neural Network (CNN), Deep Belief Net-
work (DBN), Deep Boltzmann Machine (DBM), Echo State Network (ESN), and
ConvLSTM variants. Their analysis demonstrates that hybrid models consistently
outperform single-architecture baselines, with error metrics including MAE, RMSE,
and MAPE showing notable reductions when decomposition techniques are coupled
with LSTM or CNN-LSTM configurations. The authors identify ongoing challenges
encompassing nonstationarity, spatiotemporal dependencies, measurement noise,
overfitting tendencies, and constrained interpretability, while highlighting proba-
bilistic forecasting and attention-based Transformer models as promising research
directions.

A concrete implementation of the hybrid paradigm is presented by [40], who develop
a framework integrating Boruta wrapper-based feature selection with a Bidirectional
LSTM network. The feature selection stage performs dimensionality reduction
by identifying the most predictive meteorological variables, thereby alleviating
overfitting risks and computational complexity associated with high-dimensional
inputs. The Bi-LSTM component then models temporal dependencies bidirection-
ally, enhancing the network’s ability to capture uncertainty and nonlinear dynam-
ics inherent in wind behavior. Evaluated on an hourly European meteorological
dataset containing 31 features across six years, the approach selected 13 salient vari-
ables—encompassing temperature, radiation, humidity, and soil properties — and
attained RMSE of 0.784, MAE of 0.530, MSE of 0.615, and R2 = 0.8766, surpassing
MLP, standard LSTM, and baseline Bi-LSTM benchmarks. This work underscores
the efficacy of integrating feature selection with deep learning for short-term wind
forecasting and suggests that similar preprocessing strategies could enhance LSTM
or Transformer-based models when approximating turbine production from publicly
available station measurements.

Recent advances are exemplified by [52], who introduce a heterogeneous PatchTST-
GRU sequence-to-sequence architecture for multi-step wind power forecasting. Their
model combines historical turbine observations with refined numerical weather
predictions via a fusion attention mechanism. The PatchTST module employs
Transformer-based processing to extract long-range temporal patterns, while the
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GRU component efficiently handles sequential dependencies. Results demonstrate
that integrating patch-based temporal segmentation with recurrent networks yields
robust multi-horizon wind forecasts. Critically, the authors emphasize that forecast
accuracy hinges on reconciling the spatial resolution gap between large-scale mete-
orological inputs and site-specific turbine conditions — a challenge that parallels
the present research objective of forecasting wind conditions from spatially sparse
station networks.

3.2 Spatial Interpolation and Extrapolation

Estimating wind conditions at turbine sites from spatially sparse meteorological
station observations necessitates reliable horizontal interpolation and vertical extrap-
olation techniques. [36] examine vertical extrapolation methods for wind resource
characterization and energy yield estimation. Drawing on measurements from 21
meteorological masts distributed across varied terrain types, the study contrasts the
logarithmic-based WAsP profile against the power law approach. Results indicate
that the logarithmic formulation demonstrates lower predictive reliability, while
the power law — employing wind shear coefficients derived from the two highest
measurement levels and stratified by 30° directional sectors — yields superior ac-
curacy and diminishes uncertainty in annual energy production forecasts. A central
conclusion is that extrapolation fidelity depends critically on measurement height
configuration and directional shear parameterization, whereas finer discretization
through additional wind speed bins offers negligible performance gains. Nonetheless,
site-specific terrain characteristics and atmospheric stability variations introduce
persistent challenges that constrain transferability across heterogeneous landscapes.

Turning to horizontal interpolation, [17] assess various techniques for projecting
mesoscale weather model data to specific sites, examining IDW, linear and cubic
interpolation, and nearest neighbor approaches. The evaluation reveals that although
all horizontal methods exhibit comparable error magnitudes, IDW configured with
16 neighboring grid points delivers optimal results, attaining the lowest MAE near
2.5 m/s when paired with straightforward vertical interpolation schemes such as
linear height adjustment. Concurrently, the study exposes fundamental interpolation
limitations, with error floors of MAE above 2.4 m/s and RMSE above 3.3 m/s, and
observes degraded performance in topographically complex mountainous regions
attributable to the lack of terrain-adaptive interpolation strategies. These results
underscore both the utility and inherent constraints of IDW when spatially extending
wind observations from limited measurement networks.





Chapter 4

Research Design and Approach

4.1 Research Approach

Conducted within the framework of the RITS project, this research employs a hybrid
methodological approach that integrates both conceptual and quantitative dimensions.
The research addresses two interconnected objectives. First, it seeks to develop a
methodology for approximating wind turbine power output using exclusively publicly
available datasets. Second, it aims to enable short-term forecasting of turbine power
production by incorporating weather predictions at measurement stations, thereby
extending the approximation framework beyond historical reconstruction to future
time horizons.

The quantitative dimension of this research manifests through its reliance on empiri-
cal data sources — specifically, meteorological measurements from weather stations,
turbine metadata from public registries, and manufacturer-provided power curves
— to derive production estimates via computational methods. Concurrently, the
conceptual dimension emerges through the development of a generalizable frame-
work that, while implemented and validated within the Brandenburg context, can be
adapted to alternative geographical regions where comparable public data sources
are available. This methodological duality reflects the study’s commitment to both
rigorous data-driven analysis and transferable system design.

The research constitutes applied research, addressing the practical challenge of
enhancing transparency in wind energy production while improving forecasting
capabilities for public and stakeholder engagement. Rather than pursuing an opti-
mized production system, the overarching objective is to establish a proof of concept
that demonstrates methodological feasibility. Accordingly, each component of the
methodology described in Section 4.2 emphasizes simplicity and modularity, thereby
facilitating future refinement or replacement with more sophisticated techniques.
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Throughout this thesis, priority is accorded to straightforward, interpretable methods
that establish feasibility while explicitly acknowledging avenues for methodological
enhancement in subsequent research.

4.2 Research Design

The methodological design of this research draws inspiration from existing trans-
parency initiatives, particularly the E.ON Energy Monitor, which provides visualiza-
tion of renewable energy production aggregated at the municipal level. Extending
beyond this municipal-scale approach, the present study seeks to achieve turbine-
level granularity for wind power production in Brandenburg through a multi-stage
computational pipeline that synthesizes publicly accessible data sources.

The computational methodology is structured as a sequential processing pipeline
comprising four principal stages. In the first stage, meteorological data — encompass-
ing wind speed, wind direction — are acquired from publicly available measurement
stations operated by DWD, as comprehensively detailed in Chapter 5. The second
stage applies spatial intrapolation techniques, specifically IDW, to translate station-
level measurements to individual turbine locations. In the third stage, horizontally
intrapolated wind speeds undergo vertical extrapolation from the measurement height
of approximately 10 meters above ground to the hub height of each turbine using the
power law method. The fourth and final stage applies turbine-specific power curves
to the extrapolated hub-height wind speeds, thereby deriving instantaneous power
production estimates for each installation by translating meteorological conditions
into electrical output based on manufacturer specifications.

Beyond historical approximation, the methodology incorporates a predictive com-
ponent to enable short-term forecasting capabilities. Machine learning models are
trained to predict wind speed and direction at measurement stations over a 12-hour
forecast horizon. These predicted meteorological conditions are then propagated
through the identical spatial intrapolation and power estimation pipeline, thereby
generating production forecasts at the individual turbine level.

Both historical approximations and prospective forecasts are operationalized through
an interactive web-based visualization platform. This dashboard presents aggregated
production metrics across all wind turbines in Brandenburg while simultaneously
providing access to turbine-specific information, including historical production
trajectories for the preceding 12 hours and forecasted outputs for the subsequent 12
hours.



4.3 Evaluation Strategy 23

While the framework is developed and validated specifically within the Brandenburg
context, its modular architectural design facilitates transferability to alternative
geographical regions, contingent upon the availability of comparable public data
infrastructure.

4.3 Evaluation Strategy

4.3.1 Power Production Estimation

Quantitative validation of the power production estimation component faces severe
limitations due to the unavailability of ground-truth production data from individual
wind turbines. As elaborated in Chapter 1, turbine-level production data remains
inaccessible to the public, primarily attributable to the fragmented ownership land-
scape of wind installations, wherein the majority of turbines are operated by private
entities or individual proprietors. This data unavailability precludes direct validation
against measured production values within the scope of this research. In the absence
of quantitative validation data, the power production estimates are therefore evalu-
ated through reasonability analysis, which assesses whether the derived estimates
conform to expected physical and operational constraints.

4.3.2 Weather Forecasting

The weather forecasting component, in contrast, permits rigorous quantitative eval-
uation through standard machine learning validation protocols. The evaluation
framework utilizes a held-out test dataset that is temporally disjoint from the training
data, thereby enabling unbiased quantitative assessment of forecast accuracy via
established error metrics. Chapter 6 provides a comprehensive exposition of the
evaluation methodology.





Chapter 5

Data Sources

5.1 Deutscher Wetterdienst

As Germany’s national meteorological service, the Deutscher Wetterdienst (DWD)
operates under the Federal Ministry of Transport, delivering comprehensive weather
and climate services for both public welfare and economic sectors. The "Gesetz über
den Deutschen Wetterdienst" defines its mandate, establishing responsibilities that
encompass both scientific research and public information dissemination [8].

A legislative amendment enacted on July 25, 2017, mandates the DWD to make
weather and climate information freely available to the public. This open data
initiative provides unrestricted access to weather forecasts, radar imagery, real-
time measurements, observational data, and historical climate records through the
dedicated portal at https://opendata.dwd.de [9]. The real-time meteorological mea-
surements available through this platform serve as the primary data source for the
present research.

5.1.1 Meteorological Measurement Stations

Across Germany, the DWD maintains a network of approximately 400 active meteo-
rological measurement stations. These stations demonstrate considerable variability
in temporal resolution and measured parameters, meaning that not all stations capture
the complete suite of meteorological variables [12].

To align with the geographical scope of this research, data collection focused exclu-
sively on stations located within Brandenburg and its immediate border regions. The
selection process applied three criteria: 10-minute temporal resolution, active opera-
tional status, and continuous measurement of both wind speed and wind direction.
Applying these criteria identified 18 stations within Brandenburg and 14 stations in
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adjacent border regions, resulting in a total of 32 measurement stations. The spatial
distribution of these selected stations is illustrated in Figure 5.1, derived from the
comprehensive station inventory provided by the DWD [31].

Fig. 5.1 Spatial distribution of the 33 selected DWD measurement stations in Bran-
denburg and adjacent border regions

Incorporating stations from border regions improves spatial coverage and enhances
interpolation accuracy, especially for wind turbines situated near Brandenburg’s
boundaries. Nevertheless, Brandenburg’s location at Germany’s eastern border
presents a limitation: the absence of measurement stations beyond the German-
Polish border may introduce interpolation errors for turbines in eastern Brandenburg.
Section 9.2 discusses this constraint and its implications for production estimation
accuracy.

5.1.2 Meteorological Measurements

The DWD structures station measurements into three distinct temporal datasets, each
representing a different stage of quality assurance. The historical dataset comprises
data that has undergone complete operational quality control procedures and receives
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annual updates, with all values considered final and immutable. The recent dataset
covers the preceding 500 days and undergoes daily updates, though values remain
subject to revision as quality control processes continue. The now dataset delivers
the most current 24 hours of observations with updates occurring multiple times per
hour, representing preliminary measurements that have not yet undergone quality
validation [13].

This research utilized data from all three temporal datasets as provided, without
explicitly incorporating quality control flags into the analysis. All timestamps follow
Coordinated Universal Time (UTC) convention since the year 2000, maintaining a
uniform temporal resolution of 10 minutes [13].

Fig. 5.2 Data completeness for the 32 selected DWD measurement stations

Data completeness exhibits variation across both stations and time intervals, as
illustrated in Figure 5.2. Certain stations demonstrate substantial proportions of
missing values. Across the entire dataset spanning from January 1, 2020, to October
5, 2025, the overall completeness reaches 99.20%, corresponding to 77,777 missing
values. Station 7389 exhibits the lowest completeness at 96.28%. To address
missing observations at specific 10-minute intervals, a backward-filling strategy was
employed, propagating the most recent valid measurement forward to subsequent
missing timestamps. While pragmatic, this approach introduces quality degradation
when addressing extended temporal gaps.

The DWD provides access to multiple meteorological datasets beyond wind mea-
surements. Although this research primarily employs the wind dataset, preliminary
experiments evaluated forecasting models trained on temperature and precipitation
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datasets as well. The superior performance of models trained exclusively on wind
data corroborates the findings of [1].

Wind Parameters

The wind measurement dataset delivers 10-minute averaged values for both wind
speed (expressed in m/s) and wind direction (expressed in degrees) [13]. Measure-
ments are conducted at a nominal height of 10 meters above ground level, though
actual measurement heights may vary within a tolerance of ±2 meters [10]. To main-
tain computational simplicity, this research assumes a standardized measurement
height of 10 meters across all stations [13]. Table 5.1 provides a summary of these
wind parameters .

Table 5.1 DWD wind measurement parameters

Parameter Unit Description
Wind speed m/s 10-minute average wind speed
Wind direction degrees 10-minute average wind direction

Given that this research focuses on predicting wind speed and direction over a 60-
minute forecast horizon, the raw 10-minute data undergoes temporal aggregation
to 60-minute intervals. This aggregation employs arithmetic mean values for both
parameters.

5.2 Marktstammdatenregister

The Marktstammdatenregister (MaStR) constitutes a centralized, official registry
operated by the Bundesnetzagentur (Federal Network Agency), delivering a com-
prehensive and standardized database for Germany’s electricity and gas markets.
This publicly accessible registry encompasses all energy generation and storage
facilities, irrespective of subsidy status or commissioning date. Legal obligations
require facility owners to register their installations in the MaStR and maintain
up-to-date information. A critical characteristic of this database is its exclusive focus
on Stammdaten (master data) — static metadata describing facility characteristics —
while explicitly excluding Bewegungsdaten (transactional data) such as time-series
production measurements [30].

A complete database extract was acquired for this research on August 15, 2025. The
MaStR distributes data in XML format, necessitating parsing operations based on
schema definitions specified in accompanying XSD files [29]. Although the MaStR
data model incorporates numerous optional fields, only five fields remain manda-
tory for all registered facilities: EinheitMastrNummer (unique facility identifier),
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DatumLetzteAktualisierung (last update date), Bruttoleistung (gross rated power),
Nettonennleistung (net rated power), and Technologie (technology type).

The wind turbine dataset contains extensive metadata fields, thirteen of which were
selected for utilization in this research. Table 5.2 presents an overview of these
selected fields alongside their descriptions.

Table 5.2 MaStR wind turbine metadata fields utilized in this research

Field Name Description
EinheitMastrNummer Unique facility identifier
DatumLetzteAktualisierung Last update date
Laengengrad Longitude
Breitengrad Latitude
DatumEndgueltigeStilllegung Decommissioning date
Bruttoleistung Gross rated power
Nettonennleistung Net rated power
Hersteller Manufacturer
Technologie Technology type
Typenbezeichnung Model designation
Nabenhoehe Hub height
Rotordurchmesser Rotor diameter
Land Federal state

Dataset preparation encompassed multiple filtering and cleaning procedures applied
sequentially. First, the Land field served as a filter criterion to retain exclusively
installations located in Brandenburg. This filtering operation revealed three outliers
that, despite Brandenburg registration, exhibited geographical coordinates positioned
beyond state boundaries, leading to their exclusion from the analysis. Given the
optional nature of the Land field, complete coverage of all Brandenburg turbines
cannot be guaranteed. Second, 25 turbines lacking geographical coordinates (Laen-
gengrad and Breitengrad) were eliminated, as spatial coordinates constitute essential
prerequisites for the interpolation methodology. Third, the dataset was restricted to
active turbines, identified through the absence of entries in the DatumEndgueltigeStil-
llegung field.

Certain turbines demonstrate missing values for Hersteller and Typenbezeichnung,
both representing requirements for power curve assignment. Section 6.2 details the
imputation strategy employed to address these missing values. Upon completion of
all filtering and cleaning procedures, the final dataset encompasses 4,796 active wind
turbines distributed across Brandenburg.

Although the MaStR additionally provides information concerning operational con-
straints and shutdown requirements, these parameters remained excluded from the
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present analysis to avoid the substantial increase in model complexity their incorpo-
ration would necessitate.

5.3 Wind Power Curves

As elaborated in Section 2.1, power curves define the functional relationship be-
tween wind speed and electrical power output for wind turbines, thereby enabling
instantaneous production estimation from meteorological measurements. These
manufacturer-specific curves serve as essential instruments for converting spatially
and vertically extrapolated wind speeds into turbine-level power generation esti-
mates.

Fig. 5.3 Example power curve for a wind turbine (Vestas V90/2000) from The Wind
Power database

This research draws power curve data primarily from "The Wind Power," a compre-
hensive database encompassing all aspects of the global wind energy sector. The
platform delivers both quantitative and qualitative information on wind turbines,
maintaining currency through data updates performed at minimum twice annually.
The database catalogs power curves for 896 distinct turbine models, systematically
organized by manufacturer and model designation [42]. Individual power curves
specify electrical output in kilowatts (kW) at 0.5 m/s wind speed increments, thereby
providing sufficient granularity for production estimation purposes. Figure 5.3
illustrates an exemplary power curve from this database.

Although maintained as a commercial resource rather than open data, database access
can be secured through a one-time payment of 125 Euros. The complete power curve
dataset was procured for this research to maximize coverage of the turbine inventory
documented in the MaStR. Nevertheless, the power curve database does not cover all
manufacturer-model combinations present within the MaStR dataset. For turbines
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lacking specific power curves, a standardized generic power curve serves as an
approximation.





Chapter 6

Methodology

6.1 Weather Forecasting

The weather forecasting component is designed to predict wind speed and direction
at each of the 32 measurement stations over a 12-hour forecast horizon with hourly
temporal resolution. This task represents a multivariate time series forecasting
problem in which historical meteorological observations are utilized to generate
predictions at multiple spatial locations simultaneously.

Three distinct forecasting approaches are implemented to establish performance
benchmarks and evaluate the trade-offs between model complexity and predictive
accuracy. The first approach employs a persistence baseline model that serves as a
simple reference point for assessing forecast skill. The second and third approaches
utilize deep learning architectures—specifically, a bidirectional LSTM network
and a PatchTST model — both of which represent contemporary state-of-the-art
methodologies for temporal sequence modeling and time series forecasting.

6.1.1 Dataset

The forecasting models are trained and evaluated using DWD meteorological mea-
surements, as detailed in Section 5.1.2. The dataset covers the period from January 1,
2020, to October 5, 2025 and comprises observations from 32 measurement stations
at a uniform hourly temporal resolution. Since the data is already preprocessed, no
additional preprocessing is necessary.

To facilitate rigorous model evaluation, the dataset is divided into temporally disjoint
training and test partitions. The training partition spans from January 1, 2020,
through April 1, 2025, thereby providing over five years of historical observations
for model learning. The test partition covers the period from April 1, 2025, through
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October 5, 2025, ensuring that evaluation is conducted on genuinely unseen future
observations. This temporal partitioning strategy is applied uniformly across all
three forecasting approaches to enable fair and consistent model comparison.

6.1.2 Persistence Baseline Model

A persistence model is employed as the baseline for assessing forecasting perfor-
mance. This approach operates under the assumption that meteorological conditions
remain unchanged throughout the forecast horizon. Consequently, the most recently
observed values are propagated forward across all 12 future timesteps, corresponding
to the 12-hour forecast period at hourly intervals. For each measurement station, the
wind speed and wind direction recorded at time t are replicated as predictions for all
subsequent hours t +1, t +2, . . . , t +12.

Three principal considerations motivate the selection of the persistence model as the
baseline. First, it establishes a realistic performance floor for short-term forecasting,
given that meteorological conditions demonstrate temporal autocorrelation over
hourly timescales. Second, the model’s inherent simplicity ensures interpretability
and facilitates transparent communication of forecast skill relative to a naive fore-
casting strategy. Third, the absence of training requirements or parameter tuning
enables straightforward implementation while providing a computationally efficient
reference point for benchmarking more sophisticated models.

6.1.3 Bidirectional LSTM

Bidirectional Long Short-Term Memory (BiLSTM) networks have demonstrated
robust performance in time series forecasting applications through their capacity
to capture temporal dependencies in both forward and backward directions across
sequential data.

The BiLSTM architecture employed in this research is configured to generate simul-
taneous forecasts of wind speed and direction for all 32 measurement stations over
the 12-hour prediction horizon. The model utilizes the dataset described in Chapter
5, with wind direction encoded as the sine and cosine of the direction angle to
circumvent the angular discontinuity problem at 0°/360°. Alternative representations
using Cartesian wind components (u and v) were evaluated during preliminary exper-
iments but yielded inferior performance, leading to the adoption of the trigonometric
encoding approach.

The network architecture comprises four main components. First, a station embed-
ding layer learns a unique dense vector representation for each of the 32 measurement
stations. These embeddings capture location-specific characteristics, including local
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climate patterns and geographical context, and are concatenated with the meteoro-
logical input features at each temporal step.

Second, a bidirectional LSTM layer processes the augmented input sequence. The
bidirectional architecture enables the network to extract temporal dependencies from
both past-to-present (forward) and present-to-past (backward) directions, thereby
providing richer contextual information compared to unidirectional processing. The
forward and backward hidden states at the final timestep are concatenated to construct
a comprehensive representation of the complete input sequence.

Third, a stack of fully connected (feedforward) layers with ReLU activation functions
and dropout regularization transforms the concatenated LSTM output. These layers
facilitate the learning of complex non-linear relationships between historical meteo-
rological conditions and future wind patterns. Dropout regularization is employed to
mitigate overfitting through the random deactivation of neurons during the training
process.

Fourth, a final linear projection layer maps the learned representation to the output
space, generating predictions for all 12 future timesteps simultaneously through
direct multi-step forecasting rather than iterative autoregressive prediction.

Model training follows a supervised learning paradigm with MSE serving as the loss
function, optimized using the Adam algorithm. Key hyperparameters encompass the
LSTM hidden dimension, number of LSTM layers, dropout rate, learning rate, batch
size, and station embedding dimensionality. Hyperparameter tuning is performed
through manual experimentation rather than systematic grid search or Bayesian
optimization, prioritizing computational efficiency in light of the substantial dataset
size and extended training durations. Various configurations of sequence length,
hidden dimensions, layer count, dropout rates, learning rates, and batch sizes are
assessed based on validation set performance. The specific hyperparameter values
adopted for the final model configuration are documented in Chapter 7.

6.1.4 PatchTST

The PatchTST architecture employed in this research is configured to generate
simultaneous forecasts of wind speed and direction for all 32 measurement stations
over the 12-hour prediction horizon, analogous to the BiLSTM approach. The model
utilizes the dataset described in Chapter 5, with wind direction encoded as the sine
and cosine of the direction angle to circumvent the angular discontinuity problem
at 0°/360°. Alternative representations using Cartesian wind components (u and v)
were evaluated during preliminary experiments but yielded inferior performance,
leading to the adoption of the trigonometric encoding approach.
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The network architecture comprises five principal components. First, a patch embed-
ding layer segments the continuous input sequence into overlapping temporal patches
of fixed length (e.g., 6 timesteps). Each patch is projected into a latent feature space
through a linear transformation. This patching mechanism reduces the effective
sequence length, thereby improving computational efficiency while enabling the
model to process local temporal patterns as higher-level semantic tokens.

Second, a station embedding layer learns a unique dense vector representation for
each of the 32 measurement stations, capturing location-specific characteristics. This
embedding is prepended to the sequence of patch embeddings as a special "station
token," enabling the model to condition its forecasts on station identity.

Third, the resulting token sequence is processed by a stack of Transformer encoder
layers. Each encoder layer comprises multi-head self-attention mechanisms and
position-wise feedforward sublayers. The self-attention mechanism enables the
model to learn dependencies between different temporal segments across the entire
input history, capturing both short-term and long-term relationships without the
sequential processing constraints inherent in recurrent architectures such as LSTMs.
This parallel processing capability constitutes a key advantage of the Transformer
architecture.

Fourth, the final hidden representation of the station token serves as a condensed
summary of the complete input sequence. This summary is processed through
a projection head comprising linear and non-linear transformations with dropout
regularization.

Fifth, the projection head maps the learned representation to the output space,
generating predictions for all 12 future timesteps simultaneously through direct
multi-step forecasting.

Model training follows a supervised learning paradigm with MSE serving as the loss
function, optimized using the AdamW algorithm, which incorporates weight decay
for enhanced regularization. Optional temporal smoothness regularization can be
applied to encourage stable forecasts and prevent abrupt discontinuities in predicted
trajectories. Key hyperparameters encompass patch length, patch stride, number of
Transformer encoder layers, embedding dimension, number of attention heads, and
dropout rates. These hyperparameters are tuned through manual experimentation,
prioritizing computational efficiency. The specific hyperparameter values adopted
for the final model configuration are documented in Chapter 7.
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6.1.5 Model Evaluation

Model evaluation is performed using a time series forecasting protocol applied to
the held-out test partition spanning from April 1, 2025, through October 5, 2025.
Evaluation timestamps are selected at 12-hour intervals for each of the 32 measure-
ment stations, yielding multiple independent forecast instances per station. At each
evaluation timestamp t, the model processes 24 hours of historical observations and
generates predictions for the subsequent 12-hour period.

Forecast accuracy is quantified by comparing predicted values against actual observed
measurements at each forecast horizon step. For wind speed predictions, two error
metrics are computed: MAE and RMSE, both expressed in meters per second.
For wind direction predictions, circular angular error is calculated to appropriately
account for the periodic nature of angular measurements, ensuring correct handling of
the 0°/360° wraparound. This circular error metric determines the minimum angular
distance between predicted and observed directions, thereby avoiding artificially
inflated errors near the angular discontinuity.

Performance metrics are aggregated across all evaluation timestamps and stations to
derive overall model performance statistics. Additionally, metrics are analyzed as a
function of forecast horizon to characterize how prediction accuracy degrades with
increasing lead time.

6.2 Extrapolation and Power Production Estimation

6.2.1 Horizontal Spatial Interpolation

Horizontal spatial interpolation is employed to transfer wind measurements from the
32 DWD measurement stations to the geographical locations of individual wind tur-
bines distributed across Brandenburg. This approach operates under the assumption
that each turbine is spatially surrounded by multiple measurement stations, thereby
enabling interpolation through proximity-weighted averaging.

IDW is selected as the interpolation method based on its computational simplicity,
efficiency, and established application in meteorological contexts. As detailed in
Chapter 2, IDW estimates values at unmeasured locations as weighted averages of
surrounding observations, with weights inversely proportional to the distance from
each observation point. To appropriately handle the circular nature of wind direction,
interpolation is performed on the Cartesian wind components u (east-west) and v
(north-south) rather than directly on direction angles. Following interpolation, these
components are converted back to wind speed and direction at each turbine location.
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This approach rests on several simplifying assumptions:

• Brandenburg’s predominantly flat topography [43] permits the neglect of
orographic effects that would otherwise necessitate terrain-aware interpolation
methods.

• Terrain roughness and local land cover variations are not explicitly modeled,
representing a potential source of interpolation error that could be addressed
in future research.

• All measurement stations and turbine locations are assumed to be at equivalent
ground elevations for the purpose of horizontal interpolation.

The IDW power parameter (commonly denoted # ) is set to 2, a standard value
that balances spatial smoothness with sensitivity to nearby observations. Optimal
tuning of this parameter would require validation against actual turbine-level wind
measurements, which are unavailable for this research. Future work incorporating
ground-truth data could refine this parameter through empirical comparison.

6.2.2 Vertical Extrapolation to Hub Height

Following horizontal interpolation, wind speeds at turbine locations remain at the
measurement height of approximately 10 meters above ground level [10]. Given that
wind turbines operate with tower heights usually around 150 meters [16], vertical
extrapolation is required to estimate wind speeds at the turbine’s operational altitude.
The turbine-specific hub heights required for this calculation are obtained from the
MaStR metadata.

The power law method is employed for vertical wind speed extrapolation. This
empirical relationship models the vertical increase in wind speed with height above
ground, accounting for surface friction effects that diminish with increasing altitude.
The power law is selected in preference to alternative methods, such as logarithmic
profiles, based on its simplicity, widespread application in wind energy contexts, and
demonstrated reliability for flat terrain conditions, as confirmed by [36].

Application of the power law requires specification of a wind shear exponent, which
depends on surface roughness and atmospheric stability. For this research, a standard
exponent value of 0.14 is employed. It should be noted that this represents a
commonly used approximation rather than a site-optimized parameter, and may not
be optimal for all turbine locations [26].
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6.2.3 Power Production Estimation

The final step converts hub-height wind speeds into electrical power output by ap-
plying turbine-specific power curves. To associate turbines from the MaStR registry
with their corresponding power curves in The Wind Power database, manufacturer
and model designations must be linked across the two data sources. This match-
ing process employs fuzzy string matching to accommodate variations in naming
conventions, abbreviations, and formatting inconsistencies between the datasets. Of
the 4,612 unique turbines in the Brandenburg dataset, 3,341 turbines (72.44%) were
successfully matched to specific power curves, while 1,271 turbines (27.56%) could
not be matched due to nomenclature discrepancies or database incompleteness.

For turbines lacking manufacturer-specific power curves due to unsuccessful match-
ing, a generic power curve (described in Section 2.1) derived from typical turbine
characteristics is applied. This generic curve is scaled proportionally according to
the turbine’s rated capacity obtained from the MaStR metadata, thereby providing a
reasonable approximation in the absence of model-specific data.

Given that power curve data specifies output at discrete 0.5 m/s wind speed incre-
ments, the extrapolated hub-height wind speed is rounded to the nearest 0.5 m/s
interval to retrieve the corresponding power output value. While this discretization
introduces minor quantization error, it maintains computational efficiency.

The power production estimation methodology rests on several simplifying assump-
tions:

• The turbine’s yaw mechanism optimally aligns the rotor perpendicular to the
wind direction at all times, thereby maximizing energy capture. While yaw
misalignment can reduce production in practice, modern turbines employ
active yaw control systems to minimize this effect.

• Wind conditions remain steady and spatially uniform across the rotor swept
area during each hourly measurement interval. This assumption neglects
turbulence, wind shear variation across the rotor disk, and short-term gusts
that may induce instantaneous production fluctuations.

• Wind flow to each turbine is unobstructed, thereby neglecting wake effects
from upstream turbines and blockage from other obstacles such as buildings
or vegetation. In reality, wake effects can substantially reduce downstream
turbine production in wind farm configurations, particularly when turbines are
closely spaced.
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• The spatially and vertically extrapolated wind speeds accurately represent
conditions at the turbine hub, despite inherent uncertainties in the interpolation
and extrapolation methodologies.

Under these assumptions, the methodology generates power production estimates for
each turbine at hourly resolution. These estimates can be aggregated spatially across
multiple turbines and temporally over extended periods to characterize regional wind
power generation patterns.
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Results

7.1 Weather Forecasting

Model evaluation is conducted on test data covering the period from April 1, 2025,
through October 5, 2025, representing approximately six months of hourly measure-
ments from weather stations. Forecasts are generated at 12-hour intervals for all
stations, utilizing 24 hours of historical observations to predict wind speed and direc-
tion over the subsequent 12-hour horizon. At each prediction point, the forecasted
12-hour sequence is compared against the corresponding observed values to com-
pute performance metrics including MAE and RMSE. This evaluation framework
provides a comprehensive assessment of forecasting accuracy across diverse spatial
locations and temporal conditions within the test period.

7.1.1 Persistence Model

The persistence model establishes a baseline reference for evaluating the performance
of machine learning approaches. On the test set, this model attained a mean speed
error of 1.4313 m/s, an RMSE of 1.8547 m/s, and a mean direction error of 42.79
degrees. Performance metrics across different forecast horizons are presented in
Figure 7.1, while representative forecasting examples are illustrated in Figure 7.2.
Table 7.1 provides detailed statistics disaggregated by horizon step, demonstrating
how prediction errors increase progressively with forecast lead time.

7.1.2 Bidirectional LSTM Model

The Bidirectional LSTM model is configured to process 24 hours of historical obser-
vations for generating predictions over the subsequent 12-hour forecast horizon. The
network architecture comprises 2 bidirectional LSTM layers with a hidden dimen-
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Table 7.1 Statistics by horizon step for the persistence model

Horizon Step Speed Error Direction Error
Mean (m/s) Std (m/s) Mean (°) Std (°)

1 0.4916 0.4864 20.4125 30.3464
2 0.7677 0.7048 27.0083 34.5686
3 1.0337 0.8735 33.1789 38.1531
4 1.2663 1.0021 37.9813 39.8916
5 1.4370 1.0872 41.7086 41.2293
6 1.5688 1.1434 44.7899 42.6639
7 1.6765 1.1875 46.6071 43.1488
8 1.7468 1.2303 48.7419 44.1532
9 1.7923 1.2636 50.4871 44.4874

10 1.8071 1.2757 51.9901 45.0888
11 1.8031 1.2924 54.4122 46.1606
12 1.7848 1.2906 56.1346 47.0300

Fig. 7.1 Metrics of the persistence model

Fig. 7.2 Examples of the persistence model
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sion of 128 units, supplemented by station-specific embeddings of dimension 16 to
capture spatial heterogeneity across measurement locations. Dropout regularization
with a rate of 0.3 is employed to mitigate overfitting during training. Model training
is conducted over 100 epochs with a batch size of 256 and a learning rate of 0.0003.
Table 7.2 provides the complete hyperparameter configuration.

The Bidirectional LSTM model exhibits substantial performance improvements
relative to the persistence baseline, attaining a mean speed error of 0.8817 m/s, an
RMSE of 1.1861 m/s, and a mean direction error of 38.73 degrees.

Performance metrics across different forecast horizons are visualized in Figure 7.3,
while representative prediction examples are presented in Figure 7.4. Table 7.3
provides horizon-specific error statistics, revealing the model’s capacity to maintain
relatively stable prediction accuracy throughout the 12-hour forecast period.

Table 7.2 Hyperparameters of the Bidirectional LSTM model

Parameter Value
Model Hyperparameters
History steps 24
Horizon steps 12
hidden_size 128
num_layers 2
station_embed_dim 16
dropout 0.3
Training Configuration
batch_size 256
learning_rate 0.0003
num_epochs 100
val_split 0.15
early_stop_patience 15
early_stop_min_delta 0.0001

Table 7.3 Statistics by horizon step for the Bidirectional LSTM model

Horizon Step Speed Error Direction Error
Mean (m/s) Std (m/s) Mean (°) Std (°)

1 0.4765 0.4575 20.6423 28.6225
2 0.6338 0.5642 26.2435 32.7185
3 0.7285 0.6192 30.8827 35.7348
4 0.8086 0.6780 34.6031 37.5365
5 0.8649 0.7330 37.3199 38.8564
6 0.9118 0.7742 40.1390 40.9498
7 0.9625 0.8299 41.5833 41.6009
8 0.9946 0.8573 43.5906 42.8673
9 1.0255 0.8832 45.1986 43.2259

10 1.0411 0.8958 46.6903 44.0838
11 1.0612 0.9093 48.2539 44.7179
12 1.0710 0.9086 49.5973 44.9969
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Fig. 7.3 Metrics of the Bidirectional LSTM model

Fig. 7.4 Examples of the Bidirectional LSTM model

7.1.3 PatchTST Model

The PatchTST model employs a transformer-based architecture that partitions the
24-hour input sequence into patches of length 6 with a stride of 3, thereby reducing
computational complexity while preserving temporal patterns. The network architec-
ture comprises 2 transformer layers with 4 attention heads and a model dimension
of 128. Model training is conducted over 20 epochs with a batch size of 128 and
a learning rate of 0.0005. Auxiliary loss terms are incorporated during training,
including a differential loss weight of 0.2 and a total variation loss weight of 0.05,
to promote smooth predictions. Table 7.4 presents the complete hyperparameter
configuration.

The PatchTST model attains a mean speed error of 0.9097 m/s, an RMSE of 1.2187
m/s, and a mean direction error of 39.10 degrees. Performance across different
forecast horizons is illustrated in Figure 7.5, while representative prediction examples
are provided in Figure 7.6. Table 7.5 presents detailed horizon-wise error statistics,
revealing how prediction accuracy evolves throughout the 12-hour forecast window.

7.2 Interpolation

Spatial interpolation of wind measurements from weather station locations to wind
turbine sites is performed to generate spatially distributed wind data across the study
area. This process yields a total of 128,216,264 interpolated values over the analysis
period spanning April 1, 2025, through October 5, 2025.
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Fig. 7.5 Metrics of the PatchTST model

Fig. 7.6 Examples of the PatchTST model

Table 7.4 Hyperparameters of the PatchTST model

Parameter Value
Model Hyperparameters
History steps 24
Horizon steps 12
d_model 128
nhead 4
num_layers 2
dim_feedforward 256
patch_len 6
stride 3
dropout 0.1
Training Configuration
batch_size 128
learning_rate 0.0005
num_epochs 20
val_split 0.2
early_stop_patience 4
early_stop_min_delta 0.0001
diff_loss_weight 0.2
tv_loss_weight 0.05
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Table 7.5 Statistics by horizon step for the PatchTST model

Horizon Step Speed Error Direction Error
Mean (m/s) Std (m/s) Mean (°) Std (°)

1 0.5813 0.5008 22.1022 28.6519
2 0.6916 0.5971 27.1560 32.9468
3 0.7604 0.6423 31.7353 36.0871
4 0.8217 0.6909 35.2880 38.3464
5 0.8732 0.7400 37.6746 39.6575
6 0.9193 0.7880 40.1612 41.5957
7 0.9726 0.8471 41.5573 41.9179
8 1.0115 0.8769 43.6023 43.4410
9 1.0413 0.9032 45.1048 43.5736

10 1.0629 0.9201 46.5412 44.2518
11 1.0843 0.9412 48.2774 44.9187
12 1.0962 0.9408 49.9513 45.5436

7.2.1 Wind Speed Evaluation

The interpolated wind speed values span a range from 0.00 m/s to 15.36 m/s, with a
mean of 2.82 m/s and a median of 2.58 m/s. All interpolated values remain within
the absolute valid range of 0.0 to 30.0 m/s, with 0 values (0.00%) detected outside
this range. However, 44,153,904 values (34.44%) fall outside the typical operational
range of 2.0 to 15.0 m/s. No NaN or infinite values are present in the wind speed
data.

Descriptive statistics for raw measurements, interpolated wind speeds at measure-
ment height, and extrapolated wind speeds at hub height are presented in Table 7.6.
Wind speed distributions across these three data processing stages are illustrated in
Figure 7.7.

Table 7.6 Wind speed statistics for raw measurements, interpolated data, and hub
height extrapolation

Statistic Raw Measurements Interpolated (10m) Hub Height
Mean (m/s) 3.04 2.82 3.94
Standard Deviation (m/s) 1.72 1.56 2.19
Median (m/s) — 2.58 3.60
Minimum (m/s) — 0.00 0.00
Maximum (m/s) — 15.36 22.34

7.2.2 Extreme Values Analysis

A total of 44,153,904 values are identified outside the typical operational range of
2.0 to 15.0 m/s. Among these extreme values, 25 exceed 15.0 m/s, exhibiting a
maximum of 15.36 m/s and a mean of 15.19 m/s. The majority of extreme values,
comprising 44,153,879 observations, fall below 2.0 m/s, with a minimum of 0.00
m/s and a mean of 1.26 m/s.
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Fig. 7.7 Wind speed distribution comparison across raw measurements (10m), inter-
polated data (10m), and hub height extrapolation, showing frequency distributions
and normalized density comparison with typical operational range boundaries

7.2.3 Wind Direction Evaluation

The interpolated wind direction values span a range from 0.00 degrees to 360.00
degrees, with a mean of 208.35 degrees and a median of 233.79 degrees. All values
remain within the valid range of 0.0 to 360.0 degrees, with 0 values (0.00%) detected
outside this range. No NaN or infinite values are present in the wind direction data.

Descriptive statistics for both interpolated and raw measurement wind directions are
presented in Table 7.7.

Table 7.7 Wind direction statistics for interpolated and raw measurement data

Statistic Raw Measurements Interpolated
Mean (degrees) 209.91 208.34
Standard Deviation (degrees) 93.79 93.34
Median (degrees) — 233.79
Minimum (degrees) — 0.00
Maximum (degrees) — 360.00

7.3 Extrapolation

Wind speed values are vertically extrapolated from measurement height (10m) to
turbine hub height using the power law method. A total of 128,216,264 values are
processed through this vertical transformation over the analysis period spanning
April 1, 2025, through October 5, 2025.
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7.3.1 Wind Speed at Hub Height Evaluation

The extrapolated wind speed values at hub height span a range from 0.00 m/s to
22.34 m/s, with a mean of 3.94 m/s and a median of 3.60 m/s. All extrapolated values
remain within the absolute valid range of 0.0 to 45.0 m/s, with 0 values (0.00%)
detected outside this range. However, 34,486,727 values (26.90%) fall outside the
typical operational range of 2.4 to 22.5 m/s. No NaN or infinite values are present in
the hub height wind speed data.

Consistency validation confirms that hub height wind speed values are greater than
or equal to measurement height wind speed values in all cases.

Descriptive statistics comparing wind speeds at measurement height and hub height
are presented in Table 7.6, while the corresponding wind speed distributions are
illustrated in Figure 7.7.

7.3.2 Speed Increase Analysis

Vertical extrapolation from measurement height to hub height yields a mean speed
increase ratio of 1.3966, corresponding to a mean absolute increase of 1.12 m/s.
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Implementation

8.1 System Architecture

The prototype system implements the methodology described in Chapter 6 through
a client-server architecture comprising a web-based frontend and a computational
backend. This architectural separation allows the frontend to concentrate on data
visualization and user interaction, while the backend manages computationally inten-
sive operations including meteorological data retrieval, forecasting model execution,
and spatial extrapolation.

The frontend employs Next.js, a React-based web framework that delivers server-
side rendering and optimized performance for interactive applications [47]. User
interface components and data visualization charts are constructed using shadcn,
a component library that ensures consistent styling and responsive design [48].
Interactive geographical visualization of turbine locations is realized through the
Google Maps JavaScript SDK, accessed via the @vis.gl/react-google-maps package,
which provides React bindings for efficient map rendering and interaction handling
[34].

The backend employs FastAPI, a modern Python web framework selected for its asyn-
chronous request handling capabilities and automatic API documentation generation
[39]. The backend orchestrates three primary computational pipelines: meteorologi-
cal data acquisition from DWD, wind forecasting utilizing the trained deep learning
models, and power production estimation through spatial extrapolation. The system
maintains both historical approximations for the past 12 hours and forecasts for the
subsequent 12 hours across all turbines, enabling users to analyze recent production
patterns alongside anticipated generation.
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8.2 Data Processing Pipelines

The backend executes three sequential data processing pipelines at hourly intervals.
This regular execution schedule ensures that the system maintains up-to-date pro-
duction estimates and forecasts based on the most recently available meteorological
observations. Each pipeline stage relies on the output of preceding stages, estab-
lishing a coordinated workflow that progresses from raw data acquisition to final
production estimates.

8.2.1 Meteorological Data Acquisition

The first pipeline retrieves the most recent meteorological measurements from the
DWD open data portal. Specifically, both the recent dataset (covering the past 500
days, updated daily) and the now dataset (covering the past 24 hours, updated hourly)
are fetched.

Retrieved measurements are processed and upserted (inserted or updated) into the
system database. The upsert operation is necessary because measurements in the
DWD recent and now datasets remain subject to revision as quality control procedures
continue. By updating existing records when newer versions become available, the
system ensures that subsequent calculations utilize the most accurate measurements,
even as DWD applies retrospective corrections.

8.2.2 Wind Condition Forecasting

The second pipeline applies the trained forecasting model to generate predictions
of wind speed and direction across all measurement stations. For each station, the
pipeline retrieves the most recent 24 hours of meteorological observations from the
database to construct the input sequence required by the forecasting models.

The selected forecasting model (either BiLSTM or PatchTST, as described in Chap-
ter 7) generates predictions for wind speed and direction at each station over the
subsequent 12-hour horizon at 1 hour resolution. These forecasts are subsequently
upserted into the database, where they serve as input for the production estimation
pipeline.

8.2.3 Spatial Extrapolation and Power Production Estimation

The third pipeline implements the spatial extrapolation and power estimation method-
ology detailed in Section 6.2. This pipeline processes both historical measurements
(past 12 hours) and forecasted values (future 12 hours) across all measurement
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stations, enabling the system to deliver both retrospective production approximations
and prospective forecasts.

For each turbine and timestep, the pipeline executes five sequential operations. First,
the forecasted or historical wind speed and direction from the models are transformed
into u and v wind components to facilitate spatial interpolation. Second, horizontal
spatial interpolation transfers these wind components from the 32 stations to the
turbine’s geographical location through IDW applied to the u and v components.
Third, the interpolated u and v components are transformed back to wind speed and
direction. Fourth, vertical extrapolation scales the wind speed from the 10-meter
measurement height to the turbine’s hub height through the power law method. Fifth,
the turbine-specific power curve converts the hub-height wind speed into electrical
power output. All of these steps are described in detail in Chapter 6.

The resulting production estimates are upserted into the database with metadata flags
that distinguish between historical approximations (derived from actual measure-
ments) and forecasts (derived from predicted meteorological conditions). When both
forecast-based and measurement-based estimates exist for the same timestamp, the
measurement-based estimate takes precedence, ensuring that historical records reflect
actual observations rather than predictions once measurements become available.

8.3 Web Dashboard

The web-based dashboard delivers an interactive interface for visualizing wind power
production estimates and forecasts across Brandenburg. The interface comprises two
primary views: a regional overview presenting aggregated metrics for all turbines,
and individual turbine detail pages accessible through interactive map navigation.

The overview page constitutes the entry point to the dashboard, presenting key sum-
mary statistics at the top of the interface, as shown in Figure 8.1. These statistics
encompass current aggregated production across all turbines, total number of active
turbines in the system, and the number of meteorological measurement stations pro-
viding data. Below the summary statistics, a time series chart visualizes aggregated
production for all turbines, displaying both historical approximations for the past
12 hours and forecasts for the subsequent 12 hours. This dual temporal perspective
enables users to assess recent generation patterns alongside anticipated near-term
production.

An interactive map occupies the lower portion of the overview page, displaying
the geographical distribution of all wind turbines across Brandenburg, as shown in
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Fig. 8.1 Landing page of the website

Fig. 8.2 Map view of the website
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Figure 8.2. Each turbine is represented as a clickable marker, and selecting a turbine
navigates the user to a dedicated detail page for that installation.

The turbine detail page delivers comprehensive information for individual turbines.
Summary statistics specific to the selected turbine are displayed at the top of the
page, including current production, maximum observed production, and minimum
production over the displayed time window. A time series chart analogous to that on
the overview page presents production trajectories for the selected turbine, spanning
12 hours of historical data and 12 hours of forecasts. Below the chart, all metadata
fields retrieved from the MaStR are displayed, providing technical specifications
such as manufacturer, model, hub height, rotor diameter, and rated capacity.

8.4 Data Licensing and Attribution

The implementation adheres to all applicable data licensing requirements for the
publicly accessible datasets employed in this research.

Meteorological measurements from DWD are licensed under the Creative Commons
Attribution 4.0 (CC BY 4.0) license [11]. This license permits use, modification, and
distribution of the data, provided that appropriate credit is attributed to the Deutscher
Wetterdienst as the data source. Accordingly, the dashboard interface incorporates
attribution to DWD for all meteorological measurements.

Wind turbine metadata from the Marktstammdatenregister is licensed under "Daten-
lizenz Deutschland - Namensnennung - Version 2.0" (Data License Germany -
Attribution - Version 2.0) [29]. This license similarly permits use and redistribution,
provided that credit is attributed to the Bundesnetzagentur and that the original data
source URL is referenced. The dashboard accordingly attributes turbine metadata to
the MaStR and incorporates references to the source portal.

Power curve data from The Wind Power database is subject to commercial licensing
terms, as the dataset constitutes a proprietary product available for purchase. The
specific licensing conditions governing redistribution and publication of this data are
contingent upon the terms negotiated at the time of acquisition.





Chapter 9

Discussion

9.1 Interpretation

The empirical results reveal that machine learning methods significantly surpass
the persistence baseline in forecasting accuracy, thereby validating the theoretical
framework established in Chapter 6. This section examines how the observed
findings relate to fundamental concepts in time series forecasting, including temporal
dependencies and architectural considerations in model design.

9.1.1 Persistence Model Performance and Temporal Autocorre-
lation

Employing a simple forward-propagation strategy that replicates the most recent
observation, the persistence model yielded a mean speed error of 1.4313 m/s and
an RMSE of 1.8547 m/s over the 12-hour prediction window. As elaborated in
Section 2.3, this baseline approach capitalizes on temporal autocorrelation inherent
in atmospheric phenomena, whereby current meteorological conditions tend to persist
into the near future. Table 7.1 documents a systematic decline in forecast quality,
with speed error escalating from 0.4916 m/s at the initial forecast step to 1.7848 m/s
at the final step, providing empirical evidence for the anticipated deterioration of
persistence-based predictions as lead time increases.

The direction error, which increases from 20.41° at the first horizon step to 56.13° at
the twelfth step, exhibits even more pronounced degradation than wind speed. This
behavior aligns with the meteorological understanding that wind direction exhibits
greater short-term variability than wind speed magnitude, making it inherently more
difficult to predict through simple extrapolation. The persistence model’s inability
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to anticipate directional shifts highlights the limitations of zero-order forecasting
approaches for variables exhibiting high temporal variability.

9.1.2 Machine Learning Model Superiority and Long-Term De-
pendencies

The Bidirectional LSTM and PatchTST architectures both delivered markedly su-
perior forecasting accuracy relative to the persistence baseline, thereby confirming
the theoretical advantages of machine learning systems designed to extract complex
temporal relationships. Specifically, the BiLSTM model recorded a mean speed
error of 0.8817 m/s (representing a 38.4% improvement over persistence) alongside
an RMSE of 1.1861 m/s (36.1% improvement), whereas the PatchTST model at-
tained 0.9097 m/s (36.4% improvement) and 1.2187 m/s (34.3% improvement) for
the respective metrics. These considerable gains provide empirical evidence that
both architectures successfully identified temporal dependencies extending beyond
elementary autocorrelation, thereby capturing intricate patterns embedded within
historical observations.

The superior performance of the BiLSTM model can be attributed to its distinctive
architectural characteristics. Through its cell state mechanism—regulated by forget,
input, and output gates — the LSTM architecture facilitates selective preservation of
pertinent historical information while eliminating noise and irrelevant fluctuations.
This selective memory proves especially beneficial for wind forecasting applica-
tions, given that atmospheric dynamics emerge from multiscale temporal interactions
spanning turbulent short-term variations, diurnal oscillations, and extended synoptic
weather regimes. The bidirectional processing strategy amplifies these capabilities
by analyzing sequences in both temporal directions, thereby enabling the model to
contextualize each observation using information from both antecedent and subse-
quent time steps throughout the training phase. Such bidirectional contextualization
offers particular advantages when extracting patterns from historical sequences that
manifest both forward-looking causal relationships and backward-looking dependen-
cies.

Despite achieving marginally lower accuracy than the BiLSTM, the PatchTST model
exhibits competitive forecasting performance through a fundamentally distinct ar-
chitectural paradigm. The PatchTST approach partitions the input sequence into
subseries-level patches, thereby compressing the token count from 24 individual
hourly observations to approximately 8 patches (utilizing a patch length of 6 with
a stride of 3). While this patching strategy enhances computational efficiency by
mitigating the quadratic complexity inherent in attention mechanisms, it potentially
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compromises fine-grained temporal resolution when compared to the sequential pro-
cessing characteristic of LSTM architectures. The competitive accuracy achieved by
PatchTST indicates that the localized semantic information retained within individual
patches adequately captures the predominant patterns governing wind dynamics,
although the modest performance differential suggests that the enhanced temporal
granularity afforded by LSTM processing confers incremental predictive benefits for
this specific forecasting application.

9.1.3 Forecast Horizon Behavior and Error Accumulation

Analysis of horizon-specific error statistics exposes divergent patterns in how fore-
cast uncertainty accumulates across the three modeling approaches. The persistence
baseline manifests approximately linear error progression, with speed errors esca-
lating from 0.4916 m/s at step 1 to 1.7848 m/s at step 12, representing an average
increase of roughly 0.15 m/s per forecast step during the initial six-hour window
before stabilizing. This linear trajectory stems directly from the constant-velocity
assumption underlying persistence methods, wherein each successive time step
compounds forecast uncertainty in the absence of corrective mechanisms.

Conversely, both machine learning architectures exhibit sub-linear error progression,
with the BiLSTM displaying notably consistent accuracy throughout the prediction
horizon. Speed errors for the BiLSTM advance from 0.4765 m/s at the initial step to
merely 1.0710 m/s at the twelfth step, with the error trajectory remaining remarkably
stable between steps 8 and 12. This pattern indicates that the model has acquired
the capacity to generate internally coherent predictions spanning the entire forecast
window, rather than producing isolated estimates at individual time steps. The
recurrent structure inherent to LSTM architectures naturally generates multi-step
forecasts through sequential propagation, whereby each predicted time step depends
on preceding predictions, thereby facilitating the learning of smooth, physically
realistic trajectories instead of discontinuous point estimates.

The PatchTST architecture manifests comparable sub-linear error progression, albeit
with modestly elevated errors at extended forecast horizons (reaching 1.0962 m/s at
step 12). Through its self-attention mechanism, the transformer architecture estab-
lishes direct relationships between all forecast time steps and all input observations,
which likely accounts for its capacity to preserve forecast coherence across the predic-
tion window. Nevertheless, the absence of explicit sequential constraints may permit
slightly greater prediction variability at distant forecast steps, thereby contributing to
the marginal performance differential relative to the BiLSTM approach.
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9.1.4 Wind Direction Forecasting and Vector Component Repre-
sentation

Directional errors recorded across all forecasting approaches — 42.79° for persis-
tence, 38.73° for BiLSTM, and 39.10° for PatchTST — underscore the substantial
challenges inherent in angular prediction tasks. Although the machine learning
architectures realize modest gains over the persistence baseline (approximately 9.5%
error reduction), the absolute magnitudes of directional errors remain considerable.
This constrained improvement derives partially from the circular topology of angular
measurements and the inherent difficulty of extracting meaningful patterns when
minor numerical variations in degrees can signify substantial physical divergences.

9.1.5 Implications for Wind Power Production Estimation

The forecasting accuracy attained by the machine learning architectures carries
significant ramifications for downstream power production estimation processes. As
characterized by the power curve, wind turbine power output exhibits a nonlinear
relationship with wind speed. The BiLSTM’s speed error of approximately 0.88
m/s introduces considerable uncertainty when propagated through the power curve,
especially within the transitional region between cut-in and rated wind speeds where
power output exhibits the steepest gradients. In contrast, at extremely low speeds
(below cut-in threshold) or extremely high speeds (above rated power), the identical
speed error would yield smaller relative power errors owing to the flatter segments of
the power curve. This nonlinear error propagation emphasizes the critical importance
of precise wind speed forecasting.

While directional errors remain substantial in absolute magnitude, they may exert
limited influence on power estimation for individual turbines under the idealized
assumption of perfect yaw alignment. Nevertheless, when applying interpolation
to transfer wind measurements from measurement stations to turbine locations,
directional errors can affect the spatial coherence of the wind field, potentially
introducing systematic biases in regional production estimates.

9.1.6 Spatial Interpolation Reasonability

Applying IDW to transfer wind measurements from weather stations to turbine
locations generated 128,216,264 interpolated values throughout the analysis period,
as detailed in Section 7.2. Evaluating the reasonability of these interpolated values
constitutes an essential step in validating subsequent power production estimations.
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Interpolated wind speeds demonstrate a mean of 2.82 m/s relative to 3.04 m/s
for raw measurements at station locations, constituting a 7.2% reduction in mean
values. This systematic decrease is physically defensible and stems from the spatial
distribution of turbines relative to measurement stations. The interpolation procedure
effectively aggregates wind conditions across these spatially heterogeneous locations,
inherently yielding lower mean values than the deliberately selected, high-exposure
measurement sites.

Standard deviation diminished from 1.72 m/s for raw measurements to 1.56 m/s
for interpolated values, signifying reduced variability. This smoothing phenomenon
represents an intrinsic characteristic of spatial interpolation methodologies. Although
this process entails some loss of spatial granularity and attenuates local extremes,
it remains aligned with the intended objective of estimating regional wind patterns
rather than resolving highly localized phenomena. The interpolated range spanning
0.00 to 15.36 m/s resides comfortably within the absolute valid range of 0.0 to 30.0
m/s, with no physically implausible values identified.

Nevertheless, 34.44% of interpolated values fell outside the typical operational
range of 2.0 to 15.0 m/s, predominantly comprising low wind speed values below
2.0 m/s (44,153,879 values with a mean of 1.26 m/s). This substantial proportion
of low-wind conditions reflects the wind regime characteristics of Brandenburg,
particularly during summer months and nighttime periods characterized by weak
synoptic forcing. While regional climate data for Brandenburg indicates average
hourly wind speeds around 4.0 m/s during summer, with the calmest day exhibiting
approximately 3.9 m/s and the windiest day averaging approximately 5.4 m/s [4],
both the interpolated values (mean 2.82 m/s) and the underlying raw measurement
data (mean 3.04 m/s) exhibit somewhat lower values. This discrepancy likely stems
from differences in measurement locations, temporal coverage, and the specific
meteorological conditions during the analysis period.

Wind direction statistics reveal minimal divergence between interpolated and raw
measurements, with mean values of 208.34° and 209.91° respectively. This close
correspondence indicates that the interpolation methodology preserves the predomi-
nant wind direction patterns, which proves critical for turbine yaw positioning and
wake effect modeling in subsequent production calculations. The absence of any
NaN or infinite values substantiates the numerical stability and robustness of the
interpolation procedure.
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9.1.7 Vertical Extrapolation Reasonability

Applying the power law method to extrapolate wind speeds from measurement
height (10m) to turbine hub height transformed 128,216,264 values over the analysis
period, as presented in Section 7.3. Assessing the physical reasonability of this
extrapolation proves essential, given that hub height wind speed constitutes the
primary determinant of power production estimates.

Extrapolated hub height wind speeds demonstrate a mean of 3.94 m/s relative to
2.82 m/s at measurement height, constituting a mean increase ratio of 1.3966 or an
absolute increment of 1.12 m/s. This elevation aligns with the theoretical expectation
that wind speed intensifies with altitude above ground owing to diminished surface
friction effects, as characterized by the atmospheric boundary layer wind profile.

The extrapolated wind speed range spanning 0.00 to 22.34 m/s represents a maximum
value 45.4% higher than the interpolated maximum of 15.36 m/s. This amplification
follows naturally from the multiplicative nature of the power law, wherein higher base
wind speeds receive proportionally larger absolute increments. The maximum value
of 22.34 m/s remains substantially below the absolute validity threshold of 45.0 m/s
and represents realistic extreme wind conditions at hub height. Nevertheless, 26.90%
of values fell outside the typical operational range of 2.4 to 22.5 m/s, predominantly
at the lower end, reflecting the prevalence of weak wind conditions that persist across
all vertical levels.

9.2 Limitations

Multiple constraints limit the scope, validation capacity, and accuracy of the method-
ology developed in this research. These constraints originate from geographical
restrictions, data accessibility challenges, methodological simplifications, and the
unavailability of ground-truth production data for validation purposes.

9.2.1 Geographical and Validation Constraints

The methodology has been developed and evaluated exclusively within Brandenburg,
thereby restricting the generalizability of findings to other regions characterized
by divergent geographical, meteorological, or infrastructural attributes. Validation
across diverse settings would prove necessary to evaluate transferability and identify
region-specific modifications requisite for broader applicability.

A fundamental constraint stems from the inability to rigorously validate the spatial
extrapolation and power production estimation components against actual turbine-
level measurements. As discussed in Chapter 1, turbine production data remains
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inaccessible to the public, thereby precluding quantitative assessment of extrapo-
lation accuracy and production estimate reliability. Consequently, the evaluation
of these components depends on reasonability assessments rather than empirical
validation metrics. This absence of ground-truth turbine data represents the most
significant limitation of this research, as it prevents confirmation of how accurately
the production estimates reflect actual turbine output. Without empirical validation
against real-world generation data, the practical utility of the methodology for op-
erational applications remains uncertain, despite the theoretical soundness of the
underlying approach.

9.2.2 Methodological Simplifications

The spatial interpolation methodology employs IDW, a relatively straightforward
approach necessitating several simplifying assumptions. The method presumes
uniform ground elevation for all stations and turbines, disregards terrain roughness
variations, and exploits Brandenburg’s flat topography to rationalize the omission of
orographic effects. These simplifications constitute appropriate starting points for
proof-of-concept development but may introduce systematic errors in wind speed es-
timation at individual turbine locations. More sophisticated interpolation techniques
incorporating terrain characteristics, local land cover, and atmospheric stability could
potentially enhance accuracy, particularly in regions exhibiting complex topography.

Analogously, vertical extrapolation to hub height depends exclusively on the power
law method with a fixed shear exponent of 0.14, which furnishes a straightforward
empirical relationship between altitude and wind speed. This approach assumes flat
terrain and uniform atmospheric conditions, which may not accurately represent
local conditions at all turbine sites. In reality, the wind shear exponent varies with
surface roughness, atmospheric stability, and time of day, meaning that a single
fixed value cannot optimally characterize all locations and meteorological situations.
Alternative approaches accounting for atmospheric boundary layer dynamics and
site-specific terrain characteristics could yield improved accuracy but at substantially
elevated computational cost and data requirements.

The spatial coverage of meteorological measurements is constrained by the availabil-
ity of merely 32 DWD stations satisfying the requisite criteria (10-minute resolution,
active status, wind measurements). Augmenting station density would enhance spa-
tial interpolation accuracy by diminishing the distance between measurement points
and turbine locations, thereby minimizing extrapolation uncertainty. A particularly
severe constraint manifests along Brandenburg’s eastern border, where the absence of
measurement stations in neighboring Poland generates a data gap. Turbines situated
in eastern Brandenburg depend on more distant stations for interpolation, likely
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compromising estimate accuracy in this region. Incorporating Polish meteorological
stations, contingent upon establishing data sharing agreements, would substantially
enhance coverage.

9.2.3 Power Curve Data Limitations

Not all turbine manufacturer-model combinations registered in the Marktstammdaten-
register possess corresponding entries in The Wind Power database. For turbines
lacking specific power curves, a generic curve scaled by rated capacity is applied.
This introduces approximation error, given that turbine designs exhibit variability in
their aerodynamic efficiency, cut-in/cut-out speeds, and performance characteristics.
Additionally, the matching process between MaStR turbine records and power curve
database entries depends on fuzzy string matching of manufacturer and model names,
which lacks complete reliability and may yield occasional mismatches or failed
matches.

9.2.4 Idealized Operational Assumptions

The power production estimation methodology incorporates multiple idealized as-
sumptions regarding turbine operation that inadequately reflect real-world conditions.
The model presumes that turbines continuously maintain optimal yaw alignment
with the wind direction, positioning the rotor perpendicular to the incoming flow to
maximize energy capture. Furthermore, the model assumes that each turbine operates
in unobstructed conditions, disregarding wake effects from upstream turbines within
wind farms. In reality, yaw control systems respond to changing wind directions
with finite adjustment velocities, introducing periods of suboptimal alignment that
diminish actual production below the power curve predictions. Additionally, yaw
error can accumulate owing to sensor inaccuracies or control system limitations,
particularly during rapidly shifting wind conditions.

The assumption of steady, uniform wind flow across the rotor disk similarly consti-
tutes an idealization. Real turbines encounter turbulent flow, wind shear variations
across the vertical extent of the rotor, and short-term gusts that induce instantaneous
fluctuations in production. The 10-minute averaging interval of meteorological
measurements attenuates these fluctuations but cannot capture transient dynamics
that influence cumulative energy generation.

Furthermore, the model disregards operational constraints and availability fac-
tors. Turbines undergo scheduled maintenance, experience unplanned downtime
attributable to component failures, and may be curtailed for grid balancing or noise
restrictions. The methodology implicitly presumes 100% availability, potentially
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overestimating actual production when turbines are offline or operating in reduced-
output modes. Incorporating historical availability statistics or real-time operational
status data, if accessible, would enhance estimate realism.

9.3 Practical Implications

Despite the limitations outlined above, this research demonstrates several practical
contributions relevant to energy transparency and future research directions.

The developed methodology and prototype system establish a foundation for public
visualization of wind power production in Brandenburg at turbine-level granularity.
Emulating the model pioneered by initiatives such as the E.ON Energy Monitor, the
system could amplify public awareness and comprehension of renewable energy
generation patterns throughout the region. By empowering citizens to observe both
aggregated regional production and individual turbine contributions, the platform
could cultivate greater engagement with the energy transition and furnish tangible
visibility into the magnitude and variability of wind energy generation.

From a research methodology standpoint, this work constitutes a proof of concept
demonstrating that turbine-level production approximation and forecasting can be
accomplished utilizing exclusively publicly accessible data sources. The dependence
on open DWD meteorological measurements, the public MaStR turbine registry, and
commercially available (but non-proprietary) power curve data obviates dependen-
cies on confidential production data or private agreements with turbine operators.
This approach diminishes barriers to entry for subsequent research, enabling other
investigators to replicate, extend, or adapt the methodology without necessitating
access to restricted datasets.

The modular architecture of the methodology, featuring clearly delineated compo-
nents for data acquisition, forecasting, spatial extrapolation, and power estimation,
facilitates incremental enhancements. Individual components can be refined or re-
placed with more sophisticated alternatives as methods advance or additional data
sources emerge, without necessitating comprehensive system redesign. For instance,
more advanced spatial interpolation techniques, improved forecasting models, or
enhanced power curve databases could be integrated into the existing framework to
progressively augment accuracy.
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9.4 Future Work

Multiple research trajectories emerge from the constraints and findings of this work,
presenting opportunities for validation, methodological refinement, and extension to
broader contexts.

9.4.1 Empirical Validation with Ground-Truth Data

The most critical subsequent step involves empirical validation of the spatial ex-
trapolation and power production estimation components against actual turbine
measurements. This would necessitate deployment of measurement instrumentation
on selected wind turbines or, more feasibly, establishing data-sharing partnerships
with turbine operators willing to furnish production data for research purposes. Even
a constrained validation dataset encompassing a subset of turbines would facilitate
quantitative assessment of extrapolation errors, power curve approximation accuracy,
and the ramifications of simplifying assumptions. Such validation would furnish
empirical grounding for the current reasonability-based assessment and identify
specific error sources amenable to targeted refinement.

9.4.2 Methodological Enhancements

Comparative evaluation of alternative methods for spatial interpolation and weather
forecasting could reveal performance improvements beyond the current baseline
approaches. For spatial interpolation, terrain-aware models incorporating digital
elevation data, surface roughness maps, and land cover characteristics would provide
more realistic wind speed estimates at turbine locations. Such approaches could
account for topographical channeling effects, sheltering by obstacles, and local
acceleration zones that the current IDW method cannot capture. Similarly, vertical
extrapolation could be refined by employing site-specific wind shear exponents
derived from atmospheric stability indicators or by implementing more sophisti-
cated boundary layer models that account for diurnal variations and terrain-induced
flow modifications. Systematic benchmarking against the current IDW, power law
method, and BiLSTM/PatchTST baselines would quantify potential gains from these
enhancements.

For the forecasting component, the persistence baseline could be enhanced to incor-
porate spatial context by utilizing wind measurements from neighboring stations
as additional input features, rather than relying solely on the temporal history of
a single station. This multi-station persistence approach would better capture re-
gional wind patterns and improve baseline forecast accuracy, thereby establishing a
more challenging benchmark for evaluating machine learning models. Additionally,
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systematic hyperparameter optimization for the deep learning forecasting models,
currently tuned through manual experimentation, could improve performance. Tech-
niques such as Bayesian optimization or automated neural architecture search could
identify superior configurations, while ensemble methods combining predictions
from multiple model variants could enhance robustness.

9.4.3 Geographical Transferability

Evaluating the transferability of the methodology to regions beyond Brandenburg
would test its generalizability and identify requisite adaptations. Regions exhibiting
varying topographical complexity, climatic regimes, or meteorological station densi-
ties would furnish diverse test cases. Establishing quantitative evaluation metrics for
cross-regional comparison, potentially grounded in production estimate consistency
or physical plausibility checks, would enable systematic assessment. Region-specific
data source availability and quality would likewise necessitate evaluation, given that
meteorological infrastructure and turbine registries vary internationally.

9.4.4 Extension to Solar Power

The general framework developed for wind power — integrating meteorological
forecasting, spatial interpolation, and technology-specific power models — could
potentially be adapted for solar photovoltaic generation. Solar irradiance forecasting,
spatial interpolation of solar radiation measurements, and application of photovoltaic
performance models present analogous challenges. Nevertheless, solar-specific con-
siderations such as panel orientation, shading, temperature effects, and cloud cover
dynamics would necessitate substantial methodological modifications. A parallel
solar implementation could facilitate integrated renewable energy visualization for
regions possessing both wind and solar capacity.

9.4.5 Integration with Grid and Market Data

Future extensions could integrate the turbine-level production estimates with elec-
trical grid data, such as transmission constraints or regional demand patterns, to
evaluate renewable energy integration challenges. Linking production forecasts to
electricity market price data could facilitate economic analysis of wind generation
value. Such integrations would broaden the utility of the system beyond visualization
toward decision support for grid operators, energy traders, or policy analysts.
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Conclusion

This thesis tackled the challenge of approximating, visualizing, and forecasting wind
power production at the individual turbine level using exclusively publicly accessible
data sources. Driven by the imperative for enhanced transparency in renewable
energy generation and recognizing the constraints of existing aggregated visualization
platforms, this research developed and implemented a proof-of-concept methodology
for Brandenburg. The work demonstrates that individual turbine production can
be estimated without relying on proprietary production data or establishing private
agreements with turbine operators.

The methodological framework synthesizes three publicly available data sources:
meteorological measurements from 32 DWD weather stations, turbine metadata
from 4,796 active wind installations registered in the MaStR, and manufacturer-
specific power curves from The Wind Power database. This approach implements a
multi-stage computational pipeline that begins with spatial interpolation of station
measurements to turbine locations using IDW, proceeds with vertical extrapolation
to hub height via the power law method, and concludes with power production
estimation through application of turbine-specific power curves. For short-term
forecasting capabilities, two deep learning architectures — Bidirectional LSTM
and PatchTST — were trained to predict wind speed and direction at measurement
stations over a 12-hour horizon, with these forecasts subsequently propagated through
the identical spatial interpolation and power production estimation pipeline.

The forecasting component validated the effectiveness of deep learning approaches
for short-term wind prediction. Both architectures achieved substantial performance
improvements over the persistence baseline, with evaluation on held-out test data
providing quantitative validation through MAE and RMSE metrics for wind speed,
alongside circular angular error for wind direction. Although further hyperparameter
optimization and architectural refinements could yield additional performance gains,
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the results confirm that both models successfully capture meaningful temporal
patterns in meteorological conditions suitable for downstream production forecasting.

A fundamental limitation acknowledged throughout this research concerns the in-
ability to validate spatial interpolation and power production estimates against actual
turbine measurements, as such data remains inaccessible from private operators.
Consequently, validation of these components relied on reasonability assessments
— examining whether estimates respect physical constraints such as rated capac-
ity limits and exhibit plausible spatiotemporal patterns — rather than empirical
error quantification. This absence of ground-truth validation represents the primary
weakness of the methodology, preventing confirmation of how accurately the pro-
duction estimates reflect real-world turbine output. Furthermore, the interpolation
and vertical extrapolation methods, while constituting appropriate starting points for
proof-of-concept development, employ simplified assumptions regarding terrain uni-
formity and atmospheric conditions that may not hold universally across all turbine
locations. These constraints, though inherent given current data availability, em-
phasize the necessity of future validation efforts involving partnerships with turbine
operators or sensor deployment on selected installations.

Notwithstanding methodological simplifications and validation constraints, the re-
search successfully delivered a functional web-based prototype system that visualizes
both historical production approximations and 12-hour forecasts for all wind tur-
bines across Brandenburg. The dashboard offers both regional aggregated views
and individual turbine detail pages, providing stakeholders and citizens with an
accessible interface to explore wind power generation patterns. This prototype estab-
lishes that turbine-level transparency is achievable within the constraints of public
data, thereby creating a foundation for enhanced public engagement with renewable
energy systems.

The modular architecture of the methodology enables incremental improvement.
Individual components — spatial interpolation, vertical extrapolation, forecasting
models, or power curve databases — can be refined or substituted as more sophis-
ticated methods or enhanced data sources become available, without necessitating
complete system redesign. As elaborated in Chapter 9, numerous opportunities
exist for methodological enhancement, including adoption of terrain-aware inter-
polation models that incorporate topographical and land cover data, refinement of
vertical extrapolation through site-specific wind shear parameters, enhancement of
the persistence baseline through multi-station spatial features, ensemble forecast-
ing approaches, systematic hyperparameter optimization, and empirical validation
against ground-truth measurements. Extension of the framework to additional geo-
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graphical regions or adaptation for solar photovoltaic generation represent further
promising directions for future research.

In conclusion, this thesis contributes a demonstrated proof of concept for public-
data-driven wind power transparency at turbine-level resolution, encompassing both
current production approximation and short-term forecasting. While acknowledging
the limitations inherent in relying on spatial interpolation and idealized operational as-
sumptions, the work establishes that meaningful insight into regional wind generation
can be achieved without access to proprietary production data. The methodology’s
emphasis on simplicity, modularity, and reproducibility positions it as an accessi-
ble foundation for subsequent research, policy applications, or public engagement
initiatives seeking to advance transparency in the renewable energy transition.
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Appendix A

Code

The complete source code is publicly available on GitHub at https://github.com/
Chrissydrx/bachelor-project.git.

The repository encompasses the web-based prototype described in Chapter 8, as well
as Jupyter notebooks that facilitate interaction with the system’s services and enable
comprehensive evaluation of the forecasting results. While the project does not
provide exhaustive documentation, the fundamental concepts and implementation
details are explained in the README.md file and within the notebooks themselves.

https://github.com/Chrissydrx/bachelor-project.git
https://github.com/Chrissydrx/bachelor-project.git




Appendix B

AI-Assisted Writing Tool

Cursor (https://cursor.com/), an AI-assisted code and text editor, was employed
to enhance the textual quality of this thesis. The tool was utilized in a two-stage
refinement process. In the first stage, preliminary bullet-point outlines were trans-
formed into coherent prose. In the second stage, the generated prose was further
refined to improve clarity, conciseness, and academic tone. Following each stage,
the AI-generated text was reviewed and adapted by the author as necessary to ensure
accuracy and appropriateness. It is important to note that the tool was not employed
for conceptual development or ideation; rather, it served exclusively to enhance
the linguistic presentation of author-generated content. The AI assistant operated
according to the following predefined rules:

Rules

No Code Agent

# Role

You are a scientific writing assistant, and your goal is to help me draft a scientific
paper.

# Instructions

## Code Agent

Don’t behave like a code agent. We don’t need to write any code. We only want to
write a scientific paper in LaTeX.

Latex Instructions

# Role

https://cursor.com/
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You are a scientific writing assistant, and your goal is to help me draft a scientific
paper.

# Instructions

## Writing styles

When editing, please focus on improving clarity, conciseness, and coherence while
maintaining the technical accuracy and integrity of the content. Ensure that the tone
remains formal but accessible for the general public. Please diversify the use of
words and avoid overusing certain words or phrases, especially in the same sentence.
Write in full sentences and avoid using bullet points.

## Format

The document is written in LaTeX, so when you make changes, follow the LaTeX
syntax.

You should start a new line for each sentence.

Latex Prose

# Role

You are a scientific writing assistant, and your goal is to help me draft a scientific
paper.

# Instructions

## Prosa

I will provide you with bullet points that I want to convert to prose. It is really
important that you keep the same meaning and facts from the bullet points. The
bullet points may include literature references. When converting to prose, please
preserve these LaTeX citations. Note that you can consolidate multiple citations
into a single reference if they point to the same source. The references are provided
with each bullet point to indicate the origin of the information and to ensure you
maintain this attribution when transforming the text into prose. Keep the correct
citation in mind. To improve the text quality, please also have a look at the other
chaperts before writing the prose. All chapters are in folders that start with a number
(1 - 10). Use a tone that is suitable for a scientific paper.

Example Bullet Points to Prose

Input:



79

- The expansion of renewable energy sources is accelerating, making them an increas-
ingly significant component of the energy mix. In Germany, the share of renewable
energies in the electricity sector increased to 54.4% in 2024. This is an increase of
3% compared to 2023. [44]

- In 2024 renewable energy sources produced 284 Billion kWh [44]

- Winde energy production covers 138.9 Billion kWh (48.9%) of the renewable
energy production and is therefore the largest renewable energy. [44]

- In 2024 new wind turbines with a total capacity of 3,337 MW were installed. [44]

- In 2024, new wind turbines with a total capacity of 15,000 MW were approved. So,
the expansion will increase in the future drastically. [44]

Prompt:

"Please rephrase the following bullet points to prose. Keep the same meaning and
facts from the bullet points. Don’t add any new information."

Output:

The expansion of renewable energy sources is accelerating, making them an increas-
ingly significant component of the energy mix. In Germany, the share of renewable
energies in the electricity sector increased to 54.4% in 2024, representing a 3%
increase compared to 2023. In 2024, renewable energy sources produced 284 billion
kWh. Wind energy production covered 138.9 billion kWh (48.9%) of the renewable
energy production, making it the largest renewable energy source. In 2024, new
wind turbines with a total capacity of 3,337 MW were installed. Furthermore, new
wind turbines with a total capacity of 15,000 MW were approved in 2024, indicating
that the expansion will increase drastically in the future [44].

Example Prose to Latex

Input:

Taken from the previous example.

Prompt:

"Rephrase this, keep the citations in mind"

Output:

Renewable energy sources are experiencing accelerated expansion and have become
an increasingly important element of the energy mix. In Germany, renewable
energies accounted for 54.4% of electricity generation in 2024, marking a 3% rise
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from the previous year. Total renewable energy production reached 284 billion kWh
in 2024. Among renewable sources, wind energy dominated with 138.9 billion
kWh, constituting 48.9% of total renewable energy production. During 2024, wind
turbines with a combined capacity of 3,337 MW were newly installed. Additionally,
approvals were granted for wind turbines totaling 15,000 MW in capacity, suggesting
a substantial acceleration of expansion in the coming years [44].
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